Linear Algebra Set 1

Linear Algebra Set 1

University

15 Qs

quiz-placeholder

Similar activities

Funkcja liniowa

Funkcja liniowa

1st Grade - University

12 Qs

Expresiones Racionales (Simplificación)

Expresiones Racionales (Simplificación)

8th Grade - University

12 Qs

Rectas y planos en el espacio

Rectas y planos en el espacio

University

17 Qs

Jednadžba kružnice

Jednadžba kružnice

11th Grade - University

12 Qs

funciones 1

funciones 1

10th Grade - University

10 Qs

Límites de funciones multivariables

Límites de funciones multivariables

University - Professional Development

10 Qs

phân tich đa thức thành nhân tử

phân tich đa thức thành nhân tử

University

10 Qs

Partial Differential  Equations

Partial Differential Equations

University

10 Qs

Linear Algebra Set 1

Linear Algebra Set 1

Assessment

Quiz

Mathematics

University

Hard

Created by

Rohit G

Used 25+ times

FREE Resource

15 questions

Show all answers

1.

MULTIPLE SELECT QUESTION

5 mins • 1 pt

Let VV be set of all pairs  (x, y)\left(x,\ y\right)  of real numbers and let  FF  be the field of real numbers, Define   (x, y)+(x1, y1)=(x+x1, y+y1)\left(x,\ y\right)+\left(x_1,\ y_1\right)=\left(x+x_1,\ y+y_1\right)  and  c(x, y)=(cx, y)c\left(x,\ y\right)=\left(cx,\ y\right)  , then

 V is a vector space over the field of real numbers.

 V is not a vector space over the field of real numbers

cannot be determined

 V ={(x, y) : x , y are real numbers}V\ =\left\{\left(x,\ y\right)\ :\ x\ ,\ y\ are\ real\ numbers\right\}  

2.

MULTIPLE SELECT QUESTION

3 mins • 1 pt

Let  VV  be a vector space over the field  FF  . Let  WW  be a subset of  VV  . Then  WW  is a subspace of  VV  over the field  FF  if  

 WW  is a vector space over the field  FF  

  x ,  y W, x+yW and xyW\forall\ x\ ,\ \ y\ \in W,\ x+y\in W\ and\ xy\in W  

  x ,  y W and cF, x+yW and cyW\forall\ x\ ,\ \ y\ \in W\ and\ c\in F,\ x+y\in W\ and\ cy\in W  

  x ,  y W and cF ,  cx+yW \forall\ x\ ,\ \ y\ \in W\ and\ c\in F\ ,\ \ cx+y\in W\   

3.

MULTIPLE SELECT QUESTION

3 mins • 1 pt

Let  VV be a vector space over the field  FF  . Let  W1 , W2 , W3W_1\ ,\ W_2\ ,\ W_3  are the subspaces of  VV  . Then 

 W1(W2W3)W_1\cup\left(W_2\cap W_3\right)  is a subspace of  VV  

 W1(W2W3)W_1\cap\left(W_2\cap W_3\right)  is a subspace of  VV  

 W1 W2W_1\ \cup W_2  is a subspace of  VV  

 W2 W3W_2\ \cap W_3  is a subspace of  VV  

4.

MULTIPLE SELECT QUESTION

5 mins • 1 pt

Let VV be the real vector space of all functions  ff  from  R into R R\ into\ R\   . Which of the following sets of functions are subspaces of  VV  ? 

all  ff  such that  f(x2)= f(x)2f\left(x^2\right)=\ f\left(x\right)^2  

all  ff  such that  f(0)=f(1)f\left(0\right)=f\left(1\right)  

all  ff  such that  f(1)=0f\left(-1\right)=0  

all  ff   such that  f(3)=1+f(5)f\left(3\right)=1+f\left(-5\right)  

5.

MULTIPLE SELECT QUESTION

2 mins • 1 pt

If  W1 and W2W_1\ and\ W_2  are the finite dimensional subspaces of vector space  VV  , then

 dim(W1+W2)=dimW1+dim W2\dim\left(W_1+W_2\right)=\dim W_1+\dim\ W_2  

 dim(W1+W2)=dimW1+dim W2dim(W1W2)\dim\left(W_1+W_2\right)=\dim W_1+\dim\ W_2-\dim\left(W_1\cap W_2\right)  

 dim(W1+W2)+dim(W1W2)=dimW1+dim W2\dim\left(W_1+W_2\right)+\dim\left(W_1\cap W_2\right)=\dim W_1+\dim\ W_2  

 dim(W1+W2)=dim(W1W2)\dim\left(W_1+W_2\right)=\dim\left(W_1\cap W_2\right)  

6.

MULTIPLE SELECT QUESTION

2 mins • 1 pt

Let us consider (1,1,2,4),(2,1,5,2),(1,1,4,0) and (2,1,1,6)\left(1,1,2,4\right),\left(2,-1,-5,2\right),\left(1,-1,-4,0\right)\ and\ \left(2,1,1,6\right) vectors in  R4R^4  , then  


they are linearly depenent

they are linearly independent

cannot be determined

none of the above

7.

MULTIPLE SELECT QUESTION

5 mins • 1 pt

Let  V=R3V=R^3  be a vector space over field  RR  . Then

 {(1,0,0),(0,1,0),(0,0,0)}\left\{\left(1,0,0\right),\left(0,1,0\right),\left(0,0,0\right)\right\}  is a basis of  R3R^3  

 {(1,0,0),(1,1,1),(0,0,2)}\left\{\left(1,0,0\right),\left(1,1,1\right),\left(0,0,2\right)\right\}   is a basis of  R^3  

 {(1,0,0),(0,1,0),(0,0,1),(2,3,4)}\left\{\left(1,0,0\right),\left(0,1,0\right),\left(0,0,1\right),\left(2,3,4\right)\right\}   is a basis of  R^3  

 {(1,2,3),(4,5,6),(7,8,9)}\left\{\left(1,2,3\right),\left(4,5,6\right),\left(7,8,9\right)\right\}   is a basis of  R^3  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?