Maclaurin and Taylor Series

Maclaurin and Taylor Series

University

10 Qs

quiz-placeholder

Similar activities

สถิติ-1

สถิติ-1

6th Grade - University

10 Qs

BC Calculus 9.1 - 9.2 Quiz

BC Calculus 9.1 - 9.2 Quiz

11th Grade - University

11 Qs

Introduction to Set Theory

Introduction to Set Theory

University

13 Qs

INdeks T3

INdeks T3

1st Grade - University

15 Qs

KUIS 7. DERET PANGKAT DAN TRANSFORMASI LAPLACE

KUIS 7. DERET PANGKAT DAN TRANSFORMASI LAPLACE

University

10 Qs

phuong trinh mat phang

phuong trinh mat phang

University

14 Qs

indices

indices

University

10 Qs

Quiz 2,  YM-2, KN-2, Tech. Tex-2  Engineering Mathematics-I

Quiz 2, YM-2, KN-2, Tech. Tex-2 Engineering Mathematics-I

University

14 Qs

Maclaurin and Taylor Series

Maclaurin and Taylor Series

Assessment

Quiz

Mathematics

University

Medium

CCSS
HSA.SSE.A.2, HSF.IF.C.8, HSF.LE.A.2

+1

Standards-aligned

Created by

CHEW YEE MING undefined

Used 42+ times

FREE Resource

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Maclaurin series has center at __________.

x = 0

x = 1

x = e

x = c

Tags

CCSS.HSA.APR.A.1

CCSS.HSA.SSE.A.2

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Taylor series has center at _________.

x = 0

x = 1

x = e

x = c

3.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Which is the formula of Maclaurin series?

 n=0f(n)(0)xnn!\sum_{n=0}^{\infty}\frac{f^{\left(n\right)}\left(0\right)x^n}{n!}  

 n=0f(n)(c)(xc)nn!\sum_{n=0}^{\infty}\frac{f^{\left(n\right)}\left(c\right)\left(x-c\right)^n}{n!}  

 n=1f(n)(0)xnn!\sum_{n=1}^{\infty}\frac{f^{\left(n\right)}\left(0\right)x^n}{n!}  

 n=1f(n)(c)(xc)nn!\sum_{n=1}^{\infty}\frac{f^{\left(n\right)}\left(c\right)\left(x-c\right)^n}{n!}  

Tags

CCSS.HSF.IF.C.8

4.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Which is the formula of Taylor series?

 n=0f(n)(0)xnn!\sum_{n=0}^{\infty}\frac{f^{\left(n\right)}\left(0\right)x^n}{n!}  

 n=0f(n)(c)(xc)nn!\sum_{n=0}^{\infty}\frac{f^{\left(n\right)}\left(c\right)\left(x-c\right)^n}{n!}  

 n=1f(n)(0)xnn!\sum_{n=1}^{\infty}\frac{f^{\left(n\right)}\left(0\right)x^n}{n!}  

 n=1f(n)(c)(xc)nn!\sum_{n=1}^{\infty}\frac{f^{\left(n\right)}\left(c\right)\left(x-c\right)^n}{n!}  

5.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Which is the basic Taylor series for  exe^x  ?

 n=0xn\sum_{n=0}^{\infty}x^n  

 n=0(1)nx2n(2n)!\sum_{n=0}^{\infty}\frac{\left(-1\right)^nx^{2n}}{\left(2n\right)!}  

 n=0(1)nx2n+1(2n+1)!\sum_{n=0}^{\infty}\frac{\left(-1\right)^nx^{2n+1}}{\left(2n+1\right)!}  

 n=0xnn!\sum_{n=0}^{\infty}\frac{x^n}{n!}  

Tags

CCSS.HSF.LE.A.2

6.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Which is the basic Taylor series for  sinx\sin x  ?

 n=0xn\sum_{n=0}^{\infty}x^n  

 n=0(1)nx2n(2n)!\sum_{n=0}^{\infty}\frac{\left(-1\right)^nx^{2n}}{\left(2n\right)!}  

 n=0(1)nx2n+1(2n+1)!\sum_{n=0}^{\infty}\frac{\left(-1\right)^nx^{2n+1}}{\left(2n+1\right)!}  

 n=0xnn!\sum_{n=0}^{\infty}\frac{x^n}{n!}  

7.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Find the Maclaurin polynomial with degree n = 2 of f(x)=e3xf\left(x\right)=e^{3x}  .

 1+x+x21+x+x^2  

 1+3x+6x21+3x+6x^2  

 1+3x+92x21+3x+\frac{9}{2}x^2  

 1+3x+9x21+3x+9x^2  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?