KHOẢNG CÁCH

KHOẢNG CÁCH

12th Grade

9 Qs

quiz-placeholder

Similar activities

2.1 Separable Variables & 2.2 Non-Separable Variables

2.1 Separable Variables & 2.2 Non-Separable Variables

12th Grade

12 Qs

Determinan dan invers matriks

Determinan dan invers matriks

11th - 12th Grade

12 Qs

Тест з алгебри "Властивості степеня"

Тест з алгебри "Властивості степеня"

1st - 12th Grade

10 Qs

P. de Mire chap2.1 et 2.2

P. de Mire chap2.1 et 2.2

10th - 12th Grade

10 Qs

Medidas Dispersión - Centralización

Medidas Dispersión - Centralización

10th Grade - University

10 Qs

ÔN LẠI TẬP HỢP CẤP 2

ÔN LẠI TẬP HỢP CẤP 2

10th - 12th Grade

14 Qs

Érettségi rövid - logaritmus - új

Érettségi rövid - logaritmus - új

11th - 12th Grade

9 Qs

PIRAMIDES NO ENEM

PIRAMIDES NO ENEM

9th Grade - University

10 Qs

KHOẢNG CÁCH

KHOẢNG CÁCH

Assessment

Quiz

Mathematics

12th Grade

Hard

Created by

BI BO

Used 2+ times

FREE Resource

9 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Media Image

Đường thẳng Δ\Delta  đi qua  M0M_0  và có vectơ chỉ phương  u\overrightarrow{u} . Công thức nào ĐÚNG?

 d(M,Δ)=MM0d\left(M,\Delta\right)=MM_0  .

 d\left(M,\Delta\right)=\frac{\left|\left[\overrightarrow{u},\ \overrightarrow{MM_0}\right]\right|}{\left|\overrightarrow{u}\right|}  .

 d\left(M,\Delta\right)=\frac{\left[\overrightarrow{u},\ \overrightarrow{MM_0}\right]}{\left|\overrightarrow{u}\right|}  .

 d\left(M,\Delta\right)=\frac{\overrightarrow{u}.\ \overrightarrow{MM_0}}{\left|\overrightarrow{u}\right|}  .

2.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

Khoảng cách từ điểm  M(x0; y0; z0)M\left(x_0;\ y_0;\ z_0\right)  đến mặt phẳng  (α): Ax+By+Cz+ D=0\left(\alpha\right):\ Ax+By+Cz+\ D=0  bằng?

 Ax0+By0+Cz0+D\left|Ax_0+By_0+Cz_0+D\right| 

 d\left(M,\left(\alpha\right)\right)=\frac{\left|Ax_0+By_0+Cz_0\right|}{\sqrt{A^2+B^2+C^2}}  

 d\left(M,\left(\alpha\right)\right)=\frac{Ax_0+By_0+Cz_0+D}{\sqrt{A^2+B^2+C^2}} 

 d\left(M,\left(\alpha\right)\right)=\frac{\left|Ax_0+By_0+Cz_0+D\right|}{\sqrt{A^2+B^2+C^2}} 

3.

MULTIPLE SELECT QUESTION

2 mins • 1 pt

Công thức nào SAI về khoảng cách giữa hai mặt phẳng song song  (α): Ax+By+Cz+ D=0\left(\alpha\right):\ Ax+By+Cz+\ D=0 và  (β): Ax+By+Cz+D=0\left(\beta\right):\ Ax+By+Cz+D'=0 ?

 d((α),(β))=DDA2+B2+C2d\left(\left(\alpha\right),\left(\beta\right)\right)=\frac{D-D'}{\sqrt{A^2+B^2+C^2}} với  M(β)M\in\left(\beta\right)  .

 d\left(\left(\alpha\right),\left(\beta\right)\right)=d\left(M,\ \left(\beta\right)\right)   với  M\in\left(\alpha\right)  .

 d\left(\left(\alpha\right),\left(\beta\right)\right)=\frac{\left|D-D'\right|}{\sqrt{A^2+B^2+C^2}}  .

 d\left(\left(\alpha\right),\left(\beta\right)\right)=d\left(M,\ \left(\beta\right)\right)   với  M\in\left(\alpha\right)  .

4.

MULTIPLE SELECT QUESTION

30 sec • 1 pt

Cho (d)(α)\left(d\right)\parallel\left(\alpha\right) . Khẳng định nào sau đây đúng?

 d(d,(α))=0d\left(d,\left(\alpha\right)\right)=0 

 d\left(d,\left(\alpha\right)\right)=d\left(M,\left(\alpha\right)\right),\ \forall M\in d 

5.

MULTIPLE SELECT QUESTION

1 min • 1 pt

Các công thức tính khoảng cách d giữa hai đường thẳng song song  Δ1, Δ2\Delta_1,\ \Delta_2  là :

 d=M1M2, M1Δ1, M2Δ2d=M_1M_2,\ \forall M_1\in\Delta_1,\ \forall M_2\in\Delta_2  .

 d=d(M, Δ2), MΔ1d=d\left(M,\ \Delta_2\right),\ \forall M\in\Delta_1​  

6.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 Δ1\Delta_1 đi qua  M1M_1  có VTCP  u1\overrightarrow{u_1}  ,  \Delta_2  đi qua  M_2   có VTCP  \overrightarrow{u_2} . Công thức nào ĐÚNG?

 d(Δ1, Δ2)=[u1, u2].M1M2[u1, u2]d\left(\Delta_1,\ \Delta_2\right)=\frac{\left[\overrightarrow{u_1},\ \overrightarrow{u_2}\right].\overrightarrow{M_1M_2}}{\left[\overrightarrow{u_1},\ \overrightarrow{u_2}\right]}  .

 d\left(\Delta_1,\ \Delta_2\right)=M_1M_2  .

 d\left(\Delta_1,\ \Delta_2\right)=\frac{\left|\left[\overrightarrow{u_1},\ \overrightarrow{u_2}\right].\overrightarrow{M_1M_2}\right|}{\left|\left[\overrightarrow{u_1},\ \overrightarrow{u_2}\right]\right|}  .

 d\left(\Delta_1,\ \Delta_2\right)=\frac{\left[\overrightarrow{u_1},\ \overrightarrow{u_2}\right].\overrightarrow{M_1M_2}}{\left|\left[\overrightarrow{u_1},\ \overrightarrow{u_2}\right]\right|}  .

7.

MULTIPLE SELECT QUESTION

1 min • 1 pt

Khẳng định nào SAI về khoảng cách giữa đường thẳng  dd và mặt phẳng  (α)\left(\alpha\right)   ?

 d(d,(α))=0d\left(d,\left(\alpha\right)\right)=0  khi  dd  cắt  (α)\left(\alpha\right)  .

 d\left(d,\left(\alpha\right)\right)=d\left(M,\left(\alpha\right)\right),\ \forall M\in d  khi d\parallel\left(\alpha\right) 

 d\left(d,\left(\alpha\right)\right)=0  khi  d  nằm trong \left(\alpha\right)  .

8.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Khoảng cách giữa hai đường thẳng  d: x3=y31=z11d:\ \frac{x}{3}=\frac{y-3}{-1}=\frac{z-1}{1}  và  Δ: x=1+t, y=3t, z=2+2t (tR)\Delta:\ x=1+t,\ y=-3-t,\ z=2+2t\ \left(t\in R\right) là :

 00 .

 \frac{9\sqrt{30}}{10} .

 \frac{\sqrt{30}}{3} .

 \frac{13\sqrt{30}}{30} .

9.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

Những khẳng định nào sau đây đúng?

d(Δ1,Δ2)=MNd\left(\Delta_1,\Delta_2\right)=MN

d(Δ1,Δ2)=MN>AB ,A(Δ1),B(Δ2)d\left(\Delta_1,\Delta_2\right)=MN>AB\ ,A\in\left(\Delta_1\right),B\in\left(\Delta_2\right)

MN=ABMN=AB