AP Calculus BC Formulas & Concepts

AP Calculus BC Formulas & Concepts

9th - 12th Grade

18 Qs

quiz-placeholder

Similar activities

Solving Quadratic Equations

Solving Quadratic Equations

9th Grade

18 Qs

Finding Limits from Graphs

Finding Limits from Graphs

11th Grade - University

15 Qs

Calculus - The Essentials (Through Derivative Rules)

Calculus - The Essentials (Through Derivative Rules)

9th Grade - University

20 Qs

Basic Integrals

Basic Integrals

12th Grade

15 Qs

Derivative and Integral  Quizs

Derivative and Integral Quizs

11th Grade

20 Qs

Solving Trigonometric Equations

Solving Trigonometric Equations

11th - 12th Grade

15 Qs

Nth Roots Review

Nth Roots Review

11th Grade

15 Qs

Statistics Concepts

Statistics Concepts

12th Grade - University

16 Qs

AP Calculus BC Formulas & Concepts

AP Calculus BC Formulas & Concepts

Assessment

Quiz

Mathematics

9th - 12th Grade

Hard

Created by

Quizizz Content

FREE Resource

18 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Limit Comparison Test

If lim(n→∞) a_n/b_n is finite and positive, then ∑a_n and ∑b_n behave the same (both converge or diverge)

If lim(n→∞) a_n/b_n is zero, then ∑a_n converges and ∑b_n diverges

If lim(n→∞) a_n/b_n is infinite, then ∑a_n converges and ∑b_n diverges

If lim(n→∞) a_n/b_n is finite and negative, then ∑a_n and ∑b_n behave the same (both converge or diverge)

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Horizontal and Vertical Tangents

Horizontal: f'(x) = 0 (numerator = 0)

Horizontal: f'(x) DNE (denominator = 0)

Vertical: f'(x) = 0 (numerator = 0)

Vertical: f'(x) DNE (numerator = 0)

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

What is the definition of a Horizontal Asymptote?

Let \( y = b \)

Let \( y = ax + b \)

Let \( y = \frac{1}{x} \)

Let \( y = x^2 + b \)

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Odd Function

Symmetric over origin

f(-x) = -f(x)

Symmetric over the y-axis

f(-x) = f(x)

Has a maximum point

f'(x) = 0

Always increasing

f'(x) > 0

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Definition of a Limit

@@\lim_{x\rightarrow a}f\left(x\right)@@ if and only if @@\lim_{x\rightarrow a^-}f\left(x\right)=\lim_{x\rightarrow a^+}f\left(x\right)=L@@

@@\lim_{x\rightarrow a}f\left(x\right)@@ if and only if @@\lim_{x\rightarrow a^-}f\left(x\right)\neq\lim_{x\rightarrow a^+}f\left(x\right)@@

@@\lim_{x\rightarrow a}f\left(x\right)@@ exists if and only if @@f(a) = L@@

@@\lim_{x\rightarrow a}f\left(x\right)@@ is undefined if @@f(a)\neq L@@

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Limit Definition of the Derivative #1

@@f'ig(xig)= rac{fig(x+hig)-fig(xig)}{h}@@

@@f'ig(xig)= rac{fig(xig)-fig(x-hig)}{h}@@

@@f'ig(xig)= rac{fig(x+hig)+fig(xig)}{h}@@

@@f'ig(xig)= rac{fig(xig)-fig(x+hig)}{h}@@

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Average rate of change/slope of the secant line over [a, b]

@@ rac{fig(big)-fig(aig)}{b-a}@@

@@ rac{fig(aig)-fig(big)}{b-a}@@

@@ rac{fig(big)-fig(aig)}{a-b}@@

@@ rac{fig(aig)+fig(big)}{b-a}@@

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?