математика 2

математика 2

Assessment

Quiz

Other

1st Grade

Practice Problem

Hard

Created by

Mira Seidakbar

FREE Resource

Student preview

quiz-placeholder

50 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Ikki o’zgaruvchili 𝑓(𝑥, y) funksiyaning 𝑦 ga nisbatan xususiy orttirma formulasini toping. Найти формулу частного приращения функции двух переменных 𝑓(𝑥, y) по

y. Find formula of partial increment of a function of two variables 𝑓(𝑥, y) with respect to

𝑦.

∆𝑦𝑓 = 𝑓(𝑥; 𝑦 + ∆𝑦) − 𝑓(𝑥; 𝑦)

∆𝑦𝑓 = 𝑓(𝑥 + ∆𝑦) − 𝑓(𝑥; 𝑦)

∆𝑦𝑓 = 𝑓(𝑥; 𝑦 + ∆𝑦) − 𝑓(𝑥; ∆𝑦)

∆𝑦𝑓 = 𝑓(𝑥 + 𝑦) − 𝑓(𝑥; 𝑦)

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Ikki karrali integralning xossasi to’g’ri berilgan javobni toping. Найти правильное свойство двойного интеграла. Find the correct property of triple integral.

∬𝐷 (𝑓1(𝑥; 𝑦) − 𝑓2(𝑥; 𝑦))𝑑𝑥𝑑𝑦 = ∬𝐷

𝑓1(𝑥; 𝑦)𝑑𝑥𝑑𝑦 − ∬𝐷

𝑓2(𝑥; 𝑦)𝑑𝑥𝑑𝑦

∬𝐷 (𝑓1(𝑥; 𝑦) − 𝑓2(𝑥; 𝑦))𝑑𝑥𝑑𝑦 = 3 ∬𝐷

𝑓1(𝑥; 𝑦)𝑑𝑥𝑑𝑦 − ∬𝐷

𝑓2(𝑥; 𝑦)𝑑𝑥𝑑𝑦

∬𝐷 (𝑓1(𝑥; 𝑦) − 𝑓2(𝑥; 𝑦))𝑑𝑥𝑑𝑦 = ∬𝐷

𝑓1(𝑥; 𝑦)𝑑𝑥𝑑𝑦 − 3 ∬𝐷

𝑓2(𝑥; 𝑦)𝑑𝑥𝑑𝑦

∬𝐷 (𝑓1(𝑥; 𝑦) − 𝑓2(𝑥; 𝑦))𝑑𝑥𝑑𝑦 = ∬𝐷

𝑓1(𝑥; 𝑦)𝑑𝑥𝑑𝑦 + ∬𝐷

𝑓2(𝑥; 𝑦)𝑑

𝑥𝑑𝑦.

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Ikki karrali integralning xossasi to’g’ri berilgan javobni toping. Найти правильное свойство двойного интеграла Find the correct property of triple integral.

∬𝐷 (𝑓1(𝑥; 𝑦) + 𝑓2(𝑥; 𝑦))𝑑𝑥𝑑𝑦 = ∬𝐷

𝑓1(𝑥; 𝑦)𝑑𝑥𝑑𝑦 + ∬𝐷

𝑓2(𝑥; 𝑦)𝑑𝑥𝑑𝑦

∬𝐷 (𝑓1(𝑥; 𝑦) + 𝑓2(𝑥; 𝑦))𝑑𝑥𝑑𝑦 = ∬𝐷

𝑓1(𝑥; 𝑦)𝑑𝑥𝑑𝑦 + 𝑘 ∬𝐷

𝑓2(𝑥; 𝑦)𝑑𝑥𝑑𝑦

∬𝐷 (𝑓1(𝑥; 𝑦) + 𝑓2(𝑥; 𝑦))𝑑𝑥𝑑𝑦 = 3 ∬𝐷

𝑓1(𝑥; 𝑦)𝑑𝑥𝑑𝑦 + ∬𝐷

𝑓2(𝑥; 𝑦)𝑑𝑥𝑑𝑦

∬𝐷 (𝑓1(𝑥; 𝑦) + 𝑓2(𝑥; 𝑦))𝑑𝑥𝑑𝑦 = −𝑘 ∬𝐷

𝑓1(𝑥; 𝑦)𝑑𝑥𝑑𝑦 + ∬𝐷

𝑓2(𝑥; 𝑦)𝑑𝑥𝑑𝑦

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

99. Ikki karalla integralning xossasi to’g’ri berilgan qatorni toping. Найти правильное свойство двойного интеграла. Find the correct property of double integral

∬𝐷

𝑐 · 𝑓(𝑥; 𝑦)𝑑𝑥𝑑𝑦 = 𝑐 · ∬𝐷

𝑓(𝑥; 𝑦)𝑑𝑥𝑑𝑦, 𝑐 − 𝑐𝑜𝑛𝑠𝑡

∬ 𝑐 · 𝑓(𝑥; 𝑦)𝑑𝑦𝑑𝑥 = 1 · ∬ 𝑓(𝑥; 𝑦)𝑑𝑥𝑑𝑦, 𝑐 − 𝑐𝑜𝑛𝑠𝑡

𝐷 c 𝐷

∬𝐷 𝑐 · 𝑓(𝑥; 𝑦)𝑑𝑥𝑑𝑦 = ∬𝐷 𝑓(𝑥; 𝑦)𝑑𝑦𝑑𝑥, 𝑐 − 𝑐𝑜𝑛𝑠𝑡

∬𝐷

𝑐 · 𝑓(𝑥; 𝑦)𝑑𝑥𝑑𝑦 = 3𝑐 · ∬𝐷

𝑓(𝑦; 𝑥)𝑑𝑥𝑑𝑦, 𝑐 − 𝑐𝑜𝑛𝑠𝑡

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

А(1,0) nuqtadan В(0,2) nuqtagacha oraliqda ∫ (𝑥𝑦 − 1)𝑑𝑥 + 𝑥2𝑦𝑑𝑦

egri chiziqli

integralni hisoblang. Вычислить криволинейный интеграл ∫ (𝑥𝑦 − 1)𝑑𝑥 + 𝑥2𝑦𝑑𝑦 от

точки А(1,0) до точки В(0,2). Calculate curvilinear integral ∫ (𝑥𝑦 − 1)𝑑𝑥 + 𝑥2𝑦𝑑𝑦

from point А(1,0) to point В(0,2).

-1

1

0

2

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

𝑥 = 𝑐𝑜𝑠3𝑡, 𝑦 = 𝑠𝑖𝑛3𝑡 astroid yoyi bo’yicha 𝐸(−1, 0) va 𝐻(0,1) nuqtalar orasida

∫ (43√𝑥 − 3√𝑦)𝑑𝑆

egri chiziqli integralni hisoblang. Вычислить криволинейный

интеграл ∫ (43√𝑥 − 3√𝑦)𝑑𝑆

от точки 𝐸(−1, 0) до точки 𝐻(0,1) по дуге астроиды

𝑥 = 𝑐𝑜𝑠3𝑡, 𝑦 = 𝑠𝑖𝑛3𝑡. Calculate line integral ∫ (43√𝑥 − 3√𝑦)𝑑𝑆

from point

𝐸(−1, 0) to point 𝐻(0,1) a long the arc of the astroid 𝑥 = 𝑐𝑜𝑠3𝑡, 𝑦

𝑠𝑖𝑛3𝑡.

7

46

7

− 46

7

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

96. ∫ 𝑑𝑆

egri chiziqli integralni hisoblang, bunda 1 to’g’ri chiziqning

𝛾 𝑥−𝑦 2

A(0,2) va B(4,0) nuqtalar orasiga qismi. Вычислить криволинейный интеграл ∫ 𝑑𝑆 ,

𝛾 𝑥−𝑦

где γ – отрезок прямой 𝑦 = 1 𝑥 − 2, заключенного между точками 𝐴(0, 2) и 𝐵(4, 0).

2

Calculate the curvilinear integral ∫ 𝑑𝑆 , where γ is a straight line segment 1 ,

𝛾 𝑥−𝑦 2

enclosed between points A(0,2) and B(4,0)

𝑙𝑛2

√5𝑙𝑛2

√5

2.

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?