¿Cuál es el propósito principal de Hadoop en el procesamiento de Big Data?
Big Data y sus Herramientas

Quiz
•
Computers
•
12th Grade
•
Hard
Mtro. Luis Manuel Granados Marmolejo
FREE Resource
20 questions
Show all answers
1.
MULTIPLE CHOICE QUESTION
30 sec • 1 pt
El propósito principal de Hadoop en el procesamiento de Big Data es permitir el almacenamiento distribuido y el procesamiento paralelo de grandes volúmenes de datos.
El propósito principal de Hadoop en el procesamiento de Big Data es realizar análisis de datos en tiempo real
El propósito principal de Hadoop en el procesamiento de Big Data es garantizar la seguridad de los datos almacenados
El propósito principal de Hadoop en el procesamiento de Big Data es proporcionar herramientas de visualización de datos
2.
MULTIPLE CHOICE QUESTION
30 sec • 1 pt
Explique el concepto de MapReduce y su papel en el procesamiento de datos a gran escala.
MapReduce es ineficiente para procesar grandes cantidades de datos
MapReduce es un modelo de programación para procesar y generar grandes conjuntos de datos distribuidos en un clúster de computadoras. Su papel es dividir el trabajo en pequeñas tareas que se ejecutan de forma paralela, lo que permite procesar grandes cantidades de datos de manera eficiente.
MapReduce divide el trabajo en tareas secuenciales en lugar de paralelas
MapReduce es un modelo de programación para procesar datos en un solo equipo
3.
MULTIPLE CHOICE QUESTION
30 sec • 1 pt
¿Qué es Hive y cómo se relaciona con Hadoop en el contexto de Big Data?
Hive es una herramienta de procesamiento de datos en Hadoop que permite consultar y analizar grandes conjuntos de datos almacenados en Hadoop. Se relaciona con Hadoop en el contexto de Big Data ya que utiliza el almacenamiento distribuido de Hadoop para realizar consultas y análisis de datos a gran escala.
Hive es un sistema operativo para Hadoop
Hive es una base de datos relacional independiente de Hadoop
Hive es una herramienta de visualización de datos en Hadoop
4.
MULTIPLE CHOICE QUESTION
30 sec • 1 pt
¿Cuáles son las ventajas de utilizar Spark en comparación con MapReduce para el procesamiento de Big Data?
Soporte para un solo lenguaje de programación
Las ventajas de utilizar Spark en comparación con MapReduce para el procesamiento de Big Data incluyen su velocidad, capacidad de procesamiento en memoria, soporte para múltiples lenguajes de programación y facilidad de uso.
Limitación en la capacidad de procesamiento en memoria
Mayor lentitud en el procesamiento
5.
MULTIPLE CHOICE QUESTION
30 sec • 1 pt
Defina la minería de datos y explique su importancia en el análisis de Big Data.
La minería de datos es el proceso de extraer minerales de la tierra. No tiene importancia en el análisis de Big Data.
La minería de datos es el proceso de buscar información en internet. No tiene importancia en el análisis de Big Data.
La minería de datos es el proceso de descubrir patrones y tendencias en grandes conjuntos de datos. Es importante en el análisis de Big Data porque permite extraer información valiosa y tomar decisiones basadas en datos concretos.
La minería de datos es el proceso de fabricar joyas a partir de metales preciosos. No tiene importancia en el análisis de Big Data.
6.
MULTIPLE CHOICE QUESTION
30 sec • 1 pt
¿Cuál es el papel de Hadoop Distributed File System (HDFS) en el almacenamiento de datos a gran escala?
HDFS solo se utiliza para almacenar datos pequeños
HDFS no tiene ningún papel en el almacenamiento de datos a gran escala
El papel de Hadoop Distributed File System (HDFS) en el almacenamiento de datos a gran escala es proporcionar un sistema de archivos distribuido diseñado para almacenar grandes conjuntos de datos de manera confiable y eficiente.
HDFS es un sistema de archivos diseñado para almacenar datos de manera ineficiente
7.
MULTIPLE CHOICE QUESTION
30 sec • 1 pt
¿Cómo se puede utilizar MapReduce para realizar el conteo de palabras en un conjunto de datos?
Utilizando el paradigma de MapReduce, se puede realizar el conteo de palabras en un conjunto de datos sin dividir el proceso en etapas de map y reduce
Utilizando el paradigma de MapReduce, se puede realizar el conteo de números en lugar de palabras
Utilizando el paradigma de MapReduce, se puede realizar el conteo de letras en lugar de palabras
Utilizando el paradigma de MapReduce, se puede realizar el conteo de palabras en un conjunto de datos dividiendo el proceso en etapas de map y reduce.
Create a free account and access millions of resources
Similar Resources on Quizizz
16 questions
Procesadores/CPU: Nombres, funciones y características

Quiz
•
12th Grade
15 questions
Examen de Conocimientos de Computadoras

Quiz
•
6th Grade - University
20 questions
Base de Datos

Quiz
•
12th Grade
15 questions
Quiz sobre Computadoras

Quiz
•
5th Grade - University
20 questions
Tarjeta madre motherboard

Quiz
•
12th Grade
22 questions
Conociendo Microsoft Word

Quiz
•
11th - 12th Grade
19 questions
BIG DATA

Quiz
•
12th Grade
21 questions
Unidad I Hardware

Quiz
•
7th - 12th Grade
Popular Resources on Quizizz
15 questions
Multiplication Facts

Quiz
•
4th Grade
25 questions
SS Combined Advisory Quiz

Quiz
•
6th - 8th Grade
40 questions
Week 4 Student In Class Practice Set

Quiz
•
9th - 12th Grade
40 questions
SOL: ILE DNA Tech, Gen, Evol 2025

Quiz
•
9th - 12th Grade
20 questions
NC Universities (R2H)

Quiz
•
9th - 12th Grade
15 questions
June Review Quiz

Quiz
•
Professional Development
20 questions
Congruent and Similar Triangles

Quiz
•
8th Grade
25 questions
Triangle Inequalities

Quiz
•
10th - 12th Grade
Discover more resources for Computers
40 questions
Week 4 Student In Class Practice Set

Quiz
•
9th - 12th Grade
40 questions
SOL: ILE DNA Tech, Gen, Evol 2025

Quiz
•
9th - 12th Grade
20 questions
NC Universities (R2H)

Quiz
•
9th - 12th Grade
25 questions
Triangle Inequalities

Quiz
•
10th - 12th Grade
65 questions
MegaQuiz v2 2025

Quiz
•
9th - 12th Grade
10 questions
GPA Lesson

Lesson
•
9th - 12th Grade
15 questions
SMART Goals

Quiz
•
8th - 12th Grade
45 questions
Week 3.5 Review: Set 1

Quiz
•
9th - 12th Grade