Introduction to Trigonometry | Chapter Assessment | English | Grade 10

Introduction to Trigonometry | Chapter Assessment | English | Grade 10

10th Grade

7 Qs

quiz-placeholder

Similar activities

ತ್ರಿಕೋನಮಿತಿಯ ಪ್ರಸ್ತಾವನೆ

ತ್ರಿಕೋನಮಿತಿಯ ಪ್ರಸ್ತಾವನೆ

10th Grade

10 Qs

SSLC MATHS online quize 14(KM)

SSLC MATHS online quize 14(KM)

10th Grade

10 Qs

Simplifying Trig Identities

Simplifying Trig Identities

9th - 12th Grade

10 Qs

TRIGONOMETRI

TRIGONOMETRI

10th Grade

10 Qs

ตรีโกณมิติ 1

ตรีโกณมิติ 1

KG - 12th Grade

10 Qs

SN5-Mod10-IdentTrigo-01

SN5-Mod10-IdentTrigo-01

10th - 11th Grade

12 Qs

trignometric Identities

trignometric Identities

10th Grade

7 Qs

Introduction to Trignometry

Introduction to Trignometry

10th Grade

10 Qs

Introduction to Trigonometry | Chapter Assessment | English | Grade 10

Introduction to Trigonometry | Chapter Assessment | English | Grade 10

Assessment

Quiz

Mathematics

10th Grade

Hard

CCSS
HSF.TF.C.8, HSG.SRT.C.7

Standards-aligned

Created by

Tic Tac Learn

Used 2+ times

FREE Resource

7 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

If cot θ = 40/9, then the value of cosec θ is ____

cosec θ = 9 / 41

cosec θ = 41/ 9

cosec θ = 40/ 9

cosec θ = 9/ 40

Answer explanation

Media Image

Consider a right angled triangle. If cot θ = 40 / 9. Then, let side opposite to ∠θ = 9x, Adjacent side = 40x Calculating Hypotenuse using Pythagoras Theorem, Hypotenuse²= ( 9x)² + (40x)² Hypotenuse²= 81x² + 1600x² = 1681x² Hypotenuse = √1681x² = 41x cosec θ = Hypotenuse/ Side opposite to ∠θ So cosecθ = 41x / 9x = 41/ 9 So the correct answer is Option 2

Tags

CCSS.HSF.TF.C.8

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

If 4 tan A = 3, then find the value of of the following expression:

1/21

23/41

─1/21

Cannot be determined

Answer explanation

Media Image

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

If A = 30⁰, verify that 3cosA ─ 4cos³A = 0 Click on 'Yes' after verifying.

Yes

No

Answer explanation

Given: A = 30⁰ 3 cos A ─ 4 cos³ A =0 Consider LHS = 3 cos A ─ 4 cos³ A = 3 (√3/2) - 4(√3/2)³ = (3√3)/2 ─ 4.(3√3/8) = 3√3/2 ─ 3√3/2 = 0 Therefore, LHS = RHS Hence, verified.

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Evaluate the given expression: cot² 30⁰ ─ 2cos² 60⁰ ─ 3/4sec² 45⁰ ─ 4sec² 30⁰

─7

─ 31

─ 13 / 3

Answer explanation

The values of -- cot 30⁰ = √3 cos 60⁰ = 1/2 sec 45⁰ = √2 sec 30⁰ =2 /√ 3 Substituting these values in the given expression, we get, cot² 30⁰ ─ 2cos² 60⁰ ─ 3/4 sec² 45⁰ ─ 4sec² 30⁰ = (√3)² ─ 2 (1/4) ─ 3/4 (√2)² ─ 4 (2/√3)² = 3 ─ 1/2 ─3/2 ─16/3 = 3 ─ 2 ─16/3 = 1 ─16/3 = ─13/3 So the correct answer is Option 3.

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

If cosec (A+B) = 1 and sec (A − B) = 2, 0⁰ < A + B ≤ 90⁰, A > B, then find the values of A and B.

A = 75⁰ B = 15⁰

A = 45⁰ B = 45⁰

A = 15⁰ B = 75⁰

Cannot be determined

Answer explanation

cosec (A+B) = 1 (Given) So, A + B = 90⁰ … (1) ( as cosec 90⁰ = 1) sec (A ─ B) = 2 (Given) So, A ─ B = 60⁰ ….. (2) ( as sec 60⁰ = 2) Adding Eq.1 and Eq. 2 together, 2A = 150⁰ A = 75⁰ Substituting the value of A in Eq.1, 75⁰ + B = 90⁰ B = 15⁰ So, the correct answer is Option 1

Tags

CCSS.HSG.SRT.C.7

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

State whether the following equation is true or false. sin⁸θ ─ cos⁸θ = (sin²θ ─ cos²θ)( 1 ─ 2sin²θcos²θ)

TRUE

FALSE

Answer explanation

To Prove: sin⁸θ ─ cos⁸θ = (sin²θ ─ cos²θ)( 1 ─2sin²θcos²θ) Proof: Consider LHS = sin⁸θ ─ cos⁸θ = (sin⁴θ + cos⁴θ)(sin⁴θ ─ cos⁴θ) ...........{Since a²─ b² = (a+b)(a─b)} = (sin⁴θ + cos⁴θ)(sin²θ ─ cos²θ)(sin²θ + cos²θ) = (sin⁴θ + cos⁴θ)(sin²θ ─ cos²θ) …......{Since sin²θ + cos²θ= 1} Now consider, (sin²θ + cos²θ)² = sin⁴θ + cos⁴θ + 2sin²θcos²θ So, sin⁴θ + cos⁴θ = (sin²θ + cos²θ)² ─ 2sin²θcos²θ = 1 ─ 2sin²θcos²θ Hence, (sin⁴θ + cos⁴θ)(sin²θ ─ cos²θ) can be written as, (sin⁴θ + cos⁴θ)(sin²θ ─ cos²θ) = (sin²θ ─ cos²θ) (1 ─ 2sin²θcos²θ) This is equal to RHS Hence the equation is true and the correct answer is Option 1

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

If 7cosecA ─ 3cotA = 7, then prove that 7cotA ─ 3cosecA = 3 Click on 'Yes' after completing the proof.

Yes

No

Answer explanation

7cosecA ─ 3cotA = 7, Rewrite it as 7cosecA ─ 7 = 3cotA 7(cosecA - 1) = 3cotA Multiplying both sides with (cosecA + 1). 7(cosecA - 1)(cosecA + 1) = 3cotA(cosecA + 1) 7(cosec²A - 1) = 3cotA(cosecA + 1) 7 cot²A= 3cotA(cosecA + 1) .......( As cosec²A -1 = cot²A) On dividing both the sides with cotA, we get, 7cotA = 3(cosecA + 1) 7cotA = 3cosecA + 3 7cotA ─3cosecA = 3 Hence Proved