P-series

P-series

12th Grade - University

7 Qs

quiz-placeholder

Similar activities

Series Tests

Series Tests

11th - 12th Grade

10 Qs

Topics 10.9-10.10 Review

Topics 10.9-10.10 Review

11th Grade - University

6 Qs

LIMIT TAK HINGGA

LIMIT TAK HINGGA

12th Grade

10 Qs

Solving Exponential Equations

Solving Exponential Equations

9th - 12th Grade

10 Qs

Nonlinear & Rational Inequalites

Nonlinear & Rational Inequalites

11th - 12th Grade

10 Qs

BC Calculus - Series Assessment

BC Calculus - Series Assessment

10th - 12th Grade

10 Qs

Divergence and Integral Tests

Divergence and Integral Tests

12th Grade

10 Qs

31. infinite series - comparison tests

31. infinite series - comparison tests

11th Grade - University

10 Qs

P-series

P-series

Assessment

Quiz

Mathematics

12th Grade - University

Medium

Created by

zakarya barakat

Used 4+ times

FREE Resource

7 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The series n=11xp\sum_{n=1}^{\infty}\frac{1}{x^p}   is called

Convergent series

Divergent series

p-series

Geometric Series

2.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

The series n=11xp\sum_{n=1}^{\infty}\frac{1}{x^p}  is convergent if

 p>0p>0  

 p<1p<1  

 p>1p>1  

 p=1p=1  

3.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Determine whether n=11x4\sum_{n=1}^{\infty}\frac{1}{x^4}   the is convergent or divergent.

Convergent

Divergent

4.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Determine whether n=11x\sum_{n=1}^{\infty}\frac{1}{\sqrt{x}}   the is convergent or divergent.

Convergent

Divergent

5.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Determine whether n=1x3\sum_{n=1}^{\infty}x^{-3}   the is convergent or divergent.

Convergent

Divergent

6.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

The sum of  n=11n2\sum_{n=1}^{\infty}\frac{1}{n^2}  is


 π6\frac{\pi}{6}  

 π290\frac{\pi^2}{90}  

 π26\frac{\pi^2}{6}  

 π490\frac{\pi^4}{90}  

7.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

The sum of  n=11n4\sum_{n=1}^{\infty}\frac{1}{n^4}  is


 π6\frac{\pi}{6}  

 π290\frac{\pi^2}{90}  

 π26\frac{\pi^2}{6}  

 π490\frac{\pi^4}{90}