AP Calculus BC Parametrics, Vector & Polar Formulas

AP Calculus BC Parametrics, Vector & Polar Formulas

11th Grade - University

18 Qs

quiz-placeholder

Similar activities

ACT Common Vocabulary SET 1

ACT Common Vocabulary SET 1

12th Grade

20 Qs

11º limites por propiedades

11º limites por propiedades

11th Grade

16 Qs

Số phức p1

Số phức p1

12th Grade

18 Qs

Ch. 10 Test Review

Ch. 10 Test Review

11th Grade

19 Qs

Matemática II  - EV

Matemática II - EV

University

15 Qs

Recordando elementos de Geometría

Recordando elementos de Geometría

9th - 12th Grade

18 Qs

Remidial Dimensi 3

Remidial Dimensi 3

12th Grade

15 Qs

nguyên hàm tích phân

nguyên hàm tích phân

12th Grade

15 Qs

AP Calculus BC Parametrics, Vector & Polar Formulas

AP Calculus BC Parametrics, Vector & Polar Formulas

Assessment

Quiz

Mathematics

11th Grade - University

Medium

CCSS
HSN.CN.B.4, HSN.VM.A.1, HSF-IF.C.7D

Standards-aligned

Created by

Stephanie Hontz

Used 11+ times

FREE Resource

18 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

For differentiable parametric functions,  y\left(t\right)\ \&\ x\left(t\right) , the first derivative  y(x)=dydxy'\left(x\right)=\frac{\text{d}y}{\text{d}x}  is

 dxdt\frac{\text{d}x}{\text{d}t}  

 dydtdxdt where dxdt0\frac{\frac{\text{d}y}{\text{d}t}}{\frac{\text{d}x}{\text{d}t}}\ where\ \frac{\text{d}x}{\text{d}t}\ne0  

 dydt\frac{\text{d}y}{\text{d}t}  

 dxdtdydtwhere dydt0\frac{\frac{\text{d}x}{\text{d}t}}{\frac{\text{d}y}{\text{d}t}}where\ \frac{\text{d}y}{\text{d}t}\ne0  

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

For differentiable parametric functions,  y\left(t\right)\ \&\ x\left(t\right) , the second derivative  d2ydx2\frac{\text{d}^2y}{\text{d}x^2}  is

 d(dydt)dt\frac{\text{d}\left(\frac{dy}{dt}\right)}{\text{d}t}  

 dydtdxdt where dxdt0\frac{\frac{\text{d}y}{\text{d}t}}{\frac{\text{d}x}{\text{d}t}}\ where\ \frac{\text{d}x}{\text{d}t}\ne0  

 d2ydt2\frac{\text{d}^2y}{\text{d}t^2}  

 dydtdxdtwhere y=dydx and dxdt0\frac{\frac{\text{d}y'}{\text{d}t}}{\frac{\text{d}x}{\text{d}t}}where\ y'=\frac{\text{d}y}{\text{d}x}\ and\ \frac{\text{d}x}{\text{d}t}\ne0  

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The length of a parametric curve defined by continuous and differentiable functions  y\left(t\right)\ and\ x\left(t\right) , on the interval  atba\le t\le b , is: 

 L=x(t)2+y(t)2L=\sqrt{x\left(t\right)^2+y\left(t\right)^2}  

 L=(dxdt)2+(dydt)2L=\sqrt{\left(\frac{\text{d}x}{\text{d}t}\right)^2+\left(\frac{\text{d}y}{\text{dt}}\right)^2}  

 L=ab(dxdt)2+(dydt)2dtL=\int_a^b\sqrt{\left(\frac{\text{d}x}{\text{d}t}\right)^2+\left(\frac{\text{d}y}{\text{dt}}\right)^2}dt  

 L=abx(t)2+y(t)2dtL=\int_a^b\sqrt{x\left(t\right)^2+y\left(\text{t}\right)^2}dt  

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The magnitude, or absolute value, of the vector   <x, y><x,\ y> is: 

 <x,y>=x2+y2\left|<x,y>\right|=\sqrt{x^2+y^2}  

 <x,y>(dxdt)2+(dydt)2\left|<x,y>\right|\sqrt{\left(\frac{\text{d}x}{\text{d}t}\right)^2+\left(\frac{\text{d}y}{\text{dt}}\right)^2}  

 <x,y>=ab(x(t))2+(y(t))2dt\left|<x,y>\right|=\int_a^b\sqrt{\left(x'\left(t\right)\right)^2+\left(y'\left(t\right)\right)^2}dt  

 <x,y>abx(t)2+y(t)2dt\left|<x,y>\right|\int_a^b\sqrt{x\left(t\right)^2+y\left(\text{t}\right)^2}dt  

Tags

CCSS.HSN.VM.A.1

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 r(t)=<x(t),y(t)>\overrightarrow{r}\left(t\right)=<x\left(t\right),y\left(t\right)>  , for differentiable  x(t),  y(t)x\left(t\right),\ \ y\left(t\right)  

position vector r(t)

velocity vector r(t)

velocity vector v(t)

acceleration vector a(t)

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 v(t)=<dxdt,dydt>\overrightarrow{v}\left(t\right)=<\frac{\text{d}x}{\text{d}t},\frac{\text{d}y}{\text{d}t}>  , for differentiable  x(t),  y(t)x\left(t\right),\ \ y\left(t\right)  

position vector r(t)

position vector v(t)

velocity vector v(t)

acceleration vector a(t)

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 a(t)=<d2xdt2,d2ydt2>\overrightarrow{a}\left(t\right)=<\frac{\text{d}^2x}{\text{d}t^2},\frac{\text{d}^2y}{\text{d}t^2}>  , for differentiable  x(t),  y(t)x\left(t\right),\ \ y\left(t\right)  

position vector a(t)

velocity vector a(t)

velocity vector v(t)

acceleration vector a(t)

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

By signing up, you agree to our Terms of Service & Privacy Policy

Already have an account?