Análisis dimensional

Análisis dimensional

2nd Grade

5 Qs

quiz-placeholder

Similar activities

4567fisica

4567fisica

1st - 5th Grade

10 Qs

Principio de Homogeneidad

Principio de Homogeneidad

1st - 12th Grade

10 Qs

PRINCIPIO DE FOÜRIER

PRINCIPIO DE FOÜRIER

1st - 12th Grade

8 Qs

Análisis dimensional I

Análisis dimensional I

1st - 2nd Grade

10 Qs

Fisiqueando

Fisiqueando

1st - 12th Grade

5 Qs

Movimiento en una y dos dimensiones

Movimiento en una y dos dimensiones

1st - 3rd Grade

10 Qs

8A QUIZ CALOR

8A QUIZ CALOR

1st - 3rd Grade

10 Qs

Análisis dimensional 2

Análisis dimensional 2

1st - 3rd Grade

5 Qs

Análisis dimensional

Análisis dimensional

Assessment

Quiz

Physics

2nd Grade

Hard

Created by

Richard Rattia

Used 13+ times

FREE Resource

5 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

  a =vfvoΔt\ a\ =\frac{v_f-v_o}{\Delta t} Determine la dimensión de la aceleración según la ecuación dada, donde vf, vo: son la rapidez final e inicial, respectivamente; t el intervalo de tiempo.

 LT1LT^{-1}  

LT

 LT2LT^{-2}  

 LT3LT^{-3}  

 ML2ML^{-2}  

2.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

¿Cuál de las siguientes alternativas representan las dimensiones del módulo del trabajo mecánico, cuya ecuación física es: W = F . d, donde F es el módulo de la fuerza y d el módulo del desplazamiento?.

 MLTMLT  

 MLT2MLT^{-2}  

 M2L2T2M^2L^2T^{-2}  

 ML2T2ML^2T^{-2}  

 MLT1MLT^{-1}  

3.

MULTIPLE SELECT QUESTION

3 mins • 1 pt

Media Image

Respecto al ejercicio mostrado en la figura, marque las alternativas corectas.

La dimensión [H][F] es ML2T2ML^2T^{-2}  

La dimensión de P es:  [P] =ML2T1\left[P\right]\ =ML^2T^{-1}  

La dimensión de D, es: ML3ML^{-3}  

La dimensión de y, es:  [y] = ML1\left[y\right]\ =\ ML^{-1}  

4.

FILL IN THE BLANK QUESTION

1 min • 1 pt

 MLT2MLT^{-2}  

La dimensión indicada, corresponde la la cantidad física

5.

MULTIPLE SELECT QUESTION

3 mins • 1 pt

Media Image

Con relación a la figura, indique las proposiciones correctas.

(c) ML1T2\left(c\right)\ ML^{-1}T^{-2}

(b) MLT2\left(b\right)\ MLT^{-2}

(d) LT1\left(d\right)\ \ LT^{-1}

(e) MT1\left(e\right)\ MT^{-1}

(a) ML3\left(a\right)\ ML^{-3}