Double integral in polar coordinates

Double integral in polar coordinates

University

5 Qs

quiz-placeholder

Similar activities

Repaso segundo corte

Repaso segundo corte

University

8 Qs

Trig. Equations and Simplify Trig expressions

Trig. Equations and Simplify Trig expressions

10th Grade - University

10 Qs

Simple Quiz - Integration

Simple Quiz - Integration

University

9 Qs

Circunferencia trigonométrica II

Circunferencia trigonométrica II

University

7 Qs

examen de geometría y trigonometría

examen de geometría y trigonometría

University

10 Qs

Reciprocal Trig Functions and Applying Trig Functions

Reciprocal Trig Functions and Applying Trig Functions

9th Grade - University

10 Qs

Cálculo integral U1

Cálculo integral U1

University

10 Qs

Fungsi Trigonometri dan Identitas Trigonometri

Fungsi Trigonometri dan Identitas Trigonometri

University

10 Qs

Double integral in polar coordinates

Double integral in polar coordinates

Assessment

Quiz

Mathematics

University

Medium

Created by

-- --

Used 30+ times

FREE Resource

5 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Determine the intervals for  rr   and  θ\theta  associated with the blue region.

 3r4, 0θπ3\le r\le4,\ 0\le\theta\le\pi  

 2r4, 0θπ42\le r\le4,\ 0\le\theta\le\frac{\pi}{4}  

 πrπ4, 1θ4\pi\le r\le\frac{\pi}{4},\ 1\le\theta\le4  

 2r4, π4θπ2\le r\le4,\ \frac{\pi}{4}\le\theta\le\pi  

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Formula for the double integral in polar coordinates is

f((r,θ))r drdθ\int_{ }^{ }\int_{ }^{ }f\left(\left(r,\theta\right)\right)r\ drd\theta

f(x,y) dA\int_{ }^{ }\int_{ }^{ }f\left(x,y\right)\ dA

f((r,θ))dθ dr\int_{ }^{ }\int_{ }^{ }f\left(\left(r,\theta\right)\right)d\theta\ dr

f((r,θ))θ drdθ\int_{ }^{ }\int_{ }^{ }f\left(\left(r,\theta\right)\right)\theta\ drd\theta

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Convert  012x1x2(3x +4y2) dydx\int_0^{\frac{1}{\sqrt{2}}}\int_x^{\sqrt{1-x^2}}\left(3x\ +4y^2\right)\ dydx  into polar coordinates

 0π4013r+4rsinθ drdθ\int_0^{\frac{\pi}{4}}\int_0^13r+4r\sin\theta\ drd\theta  

 π4π201r2(3cosθ+4rsin2θ)drdθ\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\int_0^1r^2\left(3\cos\theta+4r\sin^2\theta\right)drd\theta  

 0π2013rcosθ+4r2sin2θ drdθ\int_0^{\frac{\pi}{2}}\int_0^13r\cos\theta+4r^2\sin^2\theta\ drd\theta  

 π3π2013cosθ+4r2sin2θ r drdθ\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\int_0^13\cos\theta+4r^2\sin^2\theta\ r\ drd\theta  

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

R is the region in the upper half-plane bounded by the circles

 x2+y2=1x^2+y^2=1   and  x2+y2=4x^2+y^2=4  . Find the area of R

 π2\frac{\pi}{2}  

 3π2\frac{3\pi}{2}  

 2π2\pi  

 5π2\frac{5\pi}{2}  

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Find the volume of the solid bounded by the plane z = 0 and the paraboloid z=1x2y2z=1-x^2-y^2 


 π2\frac{\pi}{2}  

 π5\frac{\pi}{5}  

 π3\frac{\pi}{3}  

 π4\frac{\pi}{4}