Double integral over general region

Double integral over general region

University

5 Qs

quiz-placeholder

Similar activities

Quick warm up - Basic Derivatives

Quick warm up - Basic Derivatives

11th Grade - University

6 Qs

3xam3n

3xam3n

9th Grade - University

10 Qs

Differentiation (Basic)

Differentiation (Basic)

University

8 Qs

G4 Derivadas (I)

G4 Derivadas (I)

University

10 Qs

Differentiate exponent

Differentiate exponent

University

10 Qs

MAY - OCT 2021 : DUM30172 QUIZ 2 DLR 3A

MAY - OCT 2021 : DUM30172 QUIZ 2 DLR 3A

University

10 Qs

Quizizz 7 Differential Equation - Separable Variable

Quizizz 7 Differential Equation - Separable Variable

University

10 Qs

integral

integral

University

10 Qs

Double integral over general region

Double integral over general region

Assessment

Quiz

Mathematics

University

Medium

Created by

-- --

Used 23+ times

FREE Resource

5 questions

Show all answers

1.

MULTIPLE SELECT QUESTION

10 sec • 1 pt

Media Image

The blue region is the region type ________

I

II

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Curves  x2=2yx^2=2-y  and  x=yx=y  are shown in this figure. Set up a double integral to find the area of the blue region.

 21xx21 dydx\int_{-2}^1\int_x^{x^2}1\ dydx  

 x2121 dydx\int_x^2\int_1^21\ dydx  

 21x(2x2)1 dydx\int_{-2}^1\int_x^{\left(2-x^2\right)}1\ dydx  

 20y(2y)1 dxdy\int_{-2}^0\int_y^{\left(2-y\right)}1\ dxdy  

3.

FILL IN THE BLANK QUESTION

1 min • 1 pt

 02xx2xy2x dydx\int_0^2\int_x^{x^2}x\cdot y^2-x\ dydx  = __________

Give your answer in decimals. 

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

The base of a solid is the blue region which is a quarter of the circle  x2+y2=64x^2+y^2=64  . If the volume of the solid is given by  \int_0^8\int_0^mf\left(x,y\right)\ dydx , find m.

8

 x264\sqrt{x^2-64}  

 8x2\sqrt{8-x^2}  

 64x2\sqrt{64-x^2}  

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

A cheese with width = 5cm, length = 10cm and height = 5cm is placed at the origin of xyz axes as shown in the figure. Set up a double integral to determine the volume of the cheese.

0100y25 dxdy\int_0^{10}\int_0^{\frac{y}{2}}5\ dxdy

0502x1 dydx\int_0^5\int_0^{2x}1\ dydx

010055 dxdy\int_0^{10}\int_0^55\ dxdy

05052x dydx\int_0^5\int_0^52x\ dydx