Module B Outcome 4&6 Logarithms and Inverses

Module B Outcome 4&6 Logarithms and Inverses

11th - 12th Grade

11 Qs

quiz-placeholder

Similar activities

Module 4 Exercise 5

Module 4 Exercise 5

10th - 11th Grade

10 Qs

Logarithms

Logarithms

9th - 12th Grade

12 Qs

Properties of Logarithms

Properties of Logarithms

9th - 12th Grade

10 Qs

Graphs of Logarithms

Graphs of Logarithms

9th - 11th Grade

15 Qs

PreCal Unit 5 Retest - Exp/Log

PreCal Unit 5 Retest - Exp/Log

10th - 12th Grade

15 Qs

Log Properties

Log Properties

10th - 12th Grade

16 Qs

Integration by Substitution

Integration by Substitution

12th Grade

10 Qs

Logs: Conversions to Exponentials and Vice Versa

Logs: Conversions to Exponentials and Vice Versa

9th - 12th Grade

10 Qs

Module B Outcome 4&6 Logarithms and Inverses

Module B Outcome 4&6 Logarithms and Inverses

Assessment

Quiz

Mathematics

11th - 12th Grade

Medium

Created by

Youtube Mattdoesmath Subscribe

Used 36+ times

FREE Resource

11 questions

Show all answers

1.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Jaime decides to invest her money in a bank that advertises 5.5% annual interest compounded monthly. She decides her initial investment will be $1000. Check all the true statements that apply.

The function that models the growth of Jaimes money is

f(x)=1000(1+.05512)12xf\left(x\right)=1000\left(1+\frac{.055}{12}\right)^{12x} , such that f(x) is the amount of money after a given number of x years.

The function that models the growth of Jaimes money is f(x)=1000(1+5.512)12xf\left(x\right)=1000\left(1+\frac{5.5}{12}\right)^{12x} , such that f(x) is the amount of money after a given number of x years.

The annual yield of of Jaimes account is 5.64%

The annual yield if Jaimes account is 5.5%

f(4)=1315.70 f\left(4\right)=1315.70\ Indicates that Jaimes account will have $1315.70 after 4 years.

2.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Bill opens an online savings account through Goldman Sach's Marcus. He determines a formula that can be used to predict his accounts growth. Check all that apply regarding Bills account.

 m(x)= 5000(1+.03512)12xm\left(x\right)=\ 5000\left(1+\frac{.035}{12}\right)^{12x}  

Bill will have $5,954.71 in his account after 5 years

The inverse of Bills function in  m1(x)=log(1+.03512)(x5000)12m^{-1}\left(x\right)=\frac{\log_{\left(1+\frac{.035}{12}\right)}\left(\frac{x}{5000}\right)}{12}  

The invers of Bills function is approximately  m1(x)=112log(1.0029)(x5000)m^{-1}\left(x\right)=\frac{1}{12}\log_{\left(1.0029\right)}\left(\frac{x}{5000}\right)  

 m1(6385.83)=7m^{-1}\left(6385.83\right)=7  Indicates that bill will have a total of $6,385.83 after 7 years

3.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Given the function

 g(x)= 2.225(3x)+11g\left(x\right)=\ 2.225\left(3^x\right)+11 . Check all that apply

Given the function h(x)= 71.25h\left(x\right)=\ 71.25  , g(x) = h(x) when x = 3

The Inverse of g(x) is  g1(x)= log3(x+112.225)g^{-1}\left(x\right)=\ \log_3\left(\frac{x+11}{2.225}\right)  

The Inverse of g(x) is  g1(x)=log3(x112.225)g^{-1}\left(x\right)=\log_3\left(\frac{x-11}{2.225}\right)  

The inverse of g(x) is  g1(x)= log(x112.225)3g^{-1}\left(x\right)=\ \log_{\left(\frac{x-11}{2.225}\right)}3  

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 logu125=3\log_u125=3  

Convert the following Logarithmic statement to an exponential statement.

 u3=125u^3=125  

 3u=1253^u=125  

 u125=3u^{125}=3  

 3125=u3^{125}=u  

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt


Convert the following exponential equation to a logarithm
 4x=184^x=18  


 log418=x\log_418=x  

 log184=x\log_{18}4=x  

 logx18=4\log_x18=4  

 log4x=18\log_4x=18  

6.

MULTIPLE SELECT QUESTION

45 sec • 1 pt


Given
 j(x)=2x3+5j\left(x\right)=-2\left|x-3\right|+5  

Check all that apply.

All of the transformations that have taken place are a translation right 3 and up 5. The vertical stretch is 2 and a reflection across the x-axis

 2x1          x32x-1\ \ \ \ \ \ \ \ \ \ x\le3  
 2x +11          x>3-2x\ +11\ \ \ \ \ \ \ \ \ \ x>3  


 2x+2       x32x+2\ \ \ \ \ \ \ x\le3  
 2x+11       x<3-2x+11\ \ \ \ \ \ \ x<3  

All of the transformations that have taken place are a translation Left 3 and up 5. The horizontal compression is 2 and a reflection across the x-axis

7.

MULTIPLE SELECT QUESTION

45 sec • 1 pt


Given the function
 g(x)= 3x2+12x7g\left(x\right)=\ -3x^2+12x-7 

Check all that applies 


The inverse for the domain restriction  x2x\ge2  is  g1(x)=13(x5)+2g^{-1}\left(x\right)=\sqrt{-\frac{1}{3}\left(x-5\right)}+2  

The Inverse for the domain restriction  x2x\ge2  is  g1(x)=(x5)3+2g^{-1}\left(x\right)=\sqrt{\frac{\left(x-5\right)}{3}}+2  

Given the function  t(x)= 13x+1t\left(x\right)=\ \frac{1}{3}x+1  ,  g(x)>t(x)g\left(x\right)>t\left(x\right)  on the interval  (.889, 3)\left(.889,\ 3\right)  

Given the function  t\left(x\right)=\ \frac{1}{3}x+1  ,  g\left(x\right)>t\left(x\right)  on the interval  (, .889) U (3, )\left(-\infty,\ .889\right)\ U\ \left(3,\ \infty\right)  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?