Solving Polynomial and Rational Inequalities (and review)

Solving Polynomial and Rational Inequalities (and review)

10th - 12th Grade

16 Qs

quiz-placeholder

Similar activities

Domain and Range Algebra 2

Domain and Range Algebra 2

9th - 12th Grade

20 Qs

Limit Tak Hingga

Limit Tak Hingga

12th Grade

20 Qs

INCREASING AND DECREASING FUNCTIONS

INCREASING AND DECREASING FUNCTIONS

12th Grade

17 Qs

3.5 Intervals of increase and decrease

3.5 Intervals of increase and decrease

9th - 12th Grade

20 Qs

Limits of Piecewise Functions and Limits at Infinity

Limits of Piecewise Functions and Limits at Infinity

11th Grade

15 Qs

Increasing and Decreasing Intervals

Increasing and Decreasing Intervals

9th - 12th Grade

12 Qs

1.5 Infinite Limits and Limits at Infinity

1.5 Infinite Limits and Limits at Infinity

10th Grade - University

16 Qs

Calc. Domain of Functions (Rational, Radical, Polynomials)

Calc. Domain of Functions (Rational, Radical, Polynomials)

10th Grade - University

19 Qs

Solving Polynomial and Rational Inequalities (and review)

Solving Polynomial and Rational Inequalities (and review)

Assessment

Quiz

Mathematics

10th - 12th Grade

Medium

CCSS
HSA.CED.A.1, HSA.REI.D.10, HSA.REI.B.3

+9

Standards-aligned

Created by

Sarah Schmerer

Used 142+ times

FREE Resource

16 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Solve for x:
 x6x+3>0\frac{-x-6}{x+3}>0  

 (6,3)\left(-6,-3\right)  

 [6, 3)\left[-6,\ -3\right)  

 (, 6)(3, )\left(-\infty,\ -6\right)\cup\left(-3,\ \infty\right)  

 (, 6][3, )\left(-\infty,\ -6\right]\cup\left[-3,\ \infty\right)  

Tags

CCSS.HSA.CED.A.1

CCSS.HSA.REI.B.3

2.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

Assuming the scale is 1, where is f(x) < 0?

[4,1][2, )\left[-4,-1\right]\cup\left[2,\ \infty\right)

(4,1)(2, )\left(-4,-1\right)\cup\left(2,\ \infty\right)

(,4][1, 2]\left(-\infty,-4\right]\cup\left[-1,\ 2\right]

(,4)(1, 2)\left(-\infty,-4\right)\cup\left(-1,\ 2\right)

Tags

CCSS.HSA.APR.B.3

CCSS.HSA.CED.A.1

CCSS.HSA.REI.B.4

CCSS.HSA.REI.D.10

CCSS.HSA.REI.D.11

3.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

Assuming the scale is 1, determine where f(x) ≤ 0.

(,2][2,4)\left(-\infty,2\right]\cup\left[2,4\right)

(4, )\left(4,\ \infty\right)

(,4]\left(-\infty,4\right]

(,2)(2,4)\left(-\infty,2\right)\cup\left(2,4\right)

Tags

CCSS.HSA.APR.B.3

CCSS.HSA.CED.A.1

CCSS.HSA.REI.B.4

CCSS.HSA.REI.D.11

4.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Solve for x:
 x2x6x^2-x\le6  

 (2,3)\left(-2,3\right)  

 [2,3]\left[-2,3\right]  

 (,2)(3, )\left(-\infty,-2\right)\cup\left(3,\ \infty\right)  

 (,2][3, )\left(-\infty,-2\right]\cup\left[3,\ \infty\right)  

Tags

CCSS.HSA.CED.A.1

CCSS.HSA.REI.B.4

5.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Solve for x:
 2x2+9x5<02x^2+9x-5<0  

 (5, 12)\left(-5,\ \frac{1}{2}\right)  

 [5, 12]\left[-5,\ \frac{1}{2}\right]  

 (,5)(12, )\left(-\infty,-5\right)\cup\left(\frac{1}{2},\ \infty\right)  

 (10,1)\left(-10,1\right)  

Tags

CCSS.HSA.CED.A.1

CCSS.HSA.REI.B.4

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Solve for x:
 3xx+410\frac{3x}{x+4}-1\ge0  

 (,4][2, ]\left(-\infty,-4\right]\cup\left[2,\ \infty\right]  

 (4, 2]\left(-4,\ 2\right]  

 [4, 2]\left[-4,\ 2\right]  

 (,4)[2, )\left(-\infty,-4\right)\cup\left[2,\ \infty\right)  

Tags

CCSS.HSA.APR.D.7

CCSS.HSA.CED.A.1

CCSS.HSA.CED.A.3

CCSS.HSA.REI.B.3

7.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Which of the following rational functions has the three attributes: vertical asymptote at x = -3, horizontal asymptote at y = 0, and a zero at -1?

f(x)=(x+1)(x+3)2f\left(x\right)=\frac{\left(x+1\right)}{\left(x+3\right)^2}

f(x)=(x+1)(x+3)f\left(x\right)=\frac{\left(x+1\right)}{\left(x+3\right)^{ }}

f(x)=(x+1)2(x+3)f\left(x\right)=\frac{\left(x+1\right)^2}{\left(x+3\right)}

f(x)=(x1)(x3)2f\left(x\right)=\frac{\left(x-1\right)}{\left(x-3\right)^2}

Tags

CCSS.HSA.APR.B.3

CCSS.HSA.REI.D.10

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?