Transformations & Quadratic Formula Review

Transformations & Quadratic Formula Review

9th Grade

10 Qs

quiz-placeholder

Similar activities

Rational Expressions

Rational Expressions

9th - 12th Grade

12 Qs

SUMA Y RESTA DE POLINOMIOS

SUMA Y RESTA DE POLINOMIOS

1st Grade - University

10 Qs

Funkcja wymierna

Funkcja wymierna

9th - 12th Grade

10 Qs

Derivada de un cociente

Derivada de un cociente

1st - 12th Grade

6 Qs

Comparing Exponential Equations

Comparing Exponential Equations

9th Grade

10 Qs

Wyrażenia wymierne; równania wymierne zp

Wyrażenia wymierne; równania wymierne zp

9th - 12th Grade

11 Qs

Funkcja homograficzna

Funkcja homograficzna

9th - 11th Grade

15 Qs

9.10 Task Definition of Derivative

9.10 Task Definition of Derivative

9th - 12th Grade

15 Qs

Transformations & Quadratic Formula Review

Transformations & Quadratic Formula Review

Assessment

Quiz

Mathematics

9th Grade

Hard

CCSS
HSA-REI.B.4B

Standards-aligned

Created by

Candice Shinsky

Used 8+ times

FREE Resource

AI

Enhance your content

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

If the original function is

 f(x)=x2f\left(x\right)=x^2  and the transformed function is  f(x)=(x5)2+6f\left(x\right)=\left(x-5\right)^2+6 , describe the transformation.

Left 5, down 6

Right 5, down 6

Left 5, up 6

Right 5, up 6

2.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

If the original function is

 f(x)=x2f\left(x\right)=x^2  and the transformed function is  f(x)=(x+8)2+1f\left(x\right)=\left(x+8\right)^2+1 , describe the transformation.

Left 8, down 1

Right 8, down 1

Left 8, up 1

Right 8, up 1

3.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Given  f(x)=x2f\left(x\right)=x^2  and is transformed right 3 units, which function represents g(x)g\left(x\right) ?

 g(x)=x23g\left(x\right)=x^2-3  

 g(x)=x2+3g\left(x\right)=x^2+3  

 g(x)=(x3)2g\left(x\right)=\left(x-3\right)^2  

 g(x)=(x+3)2g\left(x\right)=\left(x+3\right)^2  

4.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Media Image

In the graph, red is the original function and blue is the transformed function.

What is the equation for the transformed function?

g(x)=(x2)2+6g\left(x\right)=\left(x-2\right)^2+6

g(x)=(x+2)2+6g\left(x\right)=\left(x+2\right)^2+6

g(x)=(x2)26g\left(x\right)=\left(x-2\right)^2-6

g(x)=(x+2)26g\left(x\right)=\left(x+2\right)^2-6

5.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

If the original function is

 f(x)=x2f\left(x\right)=x^2  and the transformed function is  f(x)=94x2f\left(x\right)=-\frac{9}{4}x^2 , describe the transformation.

Reflected across the x-axis, and a vertical compression by \frac{9}{4}  

Reflected across the x-axis, and a vertical stretch by 94\frac{9}{4}  

Vertical stretch by \frac{9}{4}  

Vertical compression by \frac{9}{4}  

6.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

If the original function is

 f(x)=x2f\left(x\right)=x^2  and the transformed function is  f(x)=35x2f\left(x\right)=\frac{3}{5}x^2 , describe the transformation.

Reflected across the x-axis, and a vertical compression by 35\frac{3}{5}  

Reflected across the x-axis, and a vertical stretch by 35\frac{3}{5}  

Vertical stretch by 35\frac{3}{5}  

Vertical compression by 35\frac{3}{5}  

7.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Given  f(x)=x2f\left(x\right)=x^2  and is vertically stretched by 76\frac{7}{6} , which function represents g(x)g\left(x\right) ?

 g(x)=(x76)2g\left(x\right)=\left(x-\frac{7}{6}\right)^2  

 g(x)=(x+76)2g\left(x\right)=-\left(x+\frac{7}{6}\right)^2  

 g(x)=76x2g\left(x\right)=\frac{7}{6}x^2  

 g(x)=76x2g\left(x\right)=-\frac{7}{6}x^2  

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

By signing up, you agree to our Terms of Service & Privacy Policy

Already have an account?