Integrals in Summation Notation

Integrals in Summation Notation

11th Grade - University

13 Qs

quiz-placeholder

Similar activities

Funciones multivariables

Funciones multivariables

University

10 Qs

Limit Tak hingga 1

Limit Tak hingga 1

12th Grade - University

10 Qs

Unidad 2 - Probabilidad y Estadística

Unidad 2 - Probabilidad y Estadística

University

15 Qs

Graphing Trig Review

Graphing Trig Review

10th Grade - University

18 Qs

六年级数学 复习单元1-4

六年级数学 复习单元1-4

1st - 12th Grade

10 Qs

ulangan harian persamaan dan pertidaksamaan trigonometri

ulangan harian persamaan dan pertidaksamaan trigonometri

11th Grade

10 Qs

Ukuran Penyebaran Data

Ukuran Penyebaran Data

12th Grade

15 Qs

ULANGAN HARIAN SEMESTER 1 MATEMATIKA PEMINATAN X MIPA

ULANGAN HARIAN SEMESTER 1 MATEMATIKA PEMINATAN X MIPA

12th Grade

13 Qs

Integrals in Summation Notation

Integrals in Summation Notation

Assessment

Quiz

Mathematics

11th Grade - University

Practice Problem

Medium

Created by

Dan Schwanekamp

Used 77+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

13 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Which of the limits is equivalent to the following definite integral?

Media Image
Media Image
Media Image
Media Image

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 25(x3+3)dx\int_2^5\left(x^3+3\right)dx  as limit of a sum is equivalent to

 limni=1n[(2+3in)3+3]1n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(2+\frac{3i}{n}\right)^3+3\right]\frac{1}{n}  

 limni=1n[(2+3in)3+3]3in\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(2+\frac{3i}{n}\right)^3+3\right]\frac{3i}{n}  

 limni=1n[(3in)3+3]3n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(\frac{3i}{n}\right)^3+3\right]\frac{3}{n}  

 limni=1n[(2+3in)3+3]3n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(2+\frac{3i}{n}\right)^3+3\right]\frac{3}{n}  

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 0πcosxdx \int_0^{\pi}\cos xdx\   as limit of a sum is equivalent to

 limni=1n[cos(πin)]in\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\cos\left(\frac{\pi i}{n}\right)\right]\frac{i}{n}  

 limni=1n[cos(in)]in\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\cos\left(\frac{i}{n}\right)\right]\frac{i}{n}  

 limni=1n[cos(πin)]πn\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\cos\left(\frac{\pi i}{n}\right)\right]\frac{\pi}{n}  

 limni=1n[cos(in)]πn\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\cos\left(\frac{i}{n}\right)\right]\frac{\pi}{n}  

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 limni=1n[(5in)2+5in+1]5n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(\frac{5i}{n}\right)^2+\frac{5i}{n}+1\right]\frac{5}{n}  in integral notation would be 

 05(x2+x+1)dx\int_0^5\left(x^2+x+1\right)dx  

 56(x2+x+1)dx\int_5^6\left(x^2+x+1\right)dx  

 01((5x)2+5x+1)dx\int_0^1\left(\left(5x\right)^2+5x+1\right)dx  

 010(x22+x2+1)dx\int_0^{10}\left(\frac{x^2}{2}+\frac{x}{2}+1\right)dx  

5.

MULTIPLE SELECT QUESTION

30 sec • 1 pt

 limni=1n[2+3+4in]4n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[2+\sqrt{3+\frac{4i}{n}}\right]\frac{4}{n}  in integral notation would be 

 37(2+x)dx\int_3^7\left(2+\sqrt{x}\right)dx  

 04(2+x)dx\int_0^4\left(2+\sqrt{x}\right)dx  

 37(2x+x)dx\int_3^7\left(2x+\sqrt{x}\right)dx  

 37(2+3+x)dx\int_3^7\left(2+\sqrt{3+x}\right)dx  

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Which of the definite integrals is equivalent to the following limit?

Media Image
Media Image
Media Image
Media Image

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Which of the limits is equivalent to the following definite integral?

Media Image
Media Image
Media Image
Media Image

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

By signing up, you agree to our Terms of Service & Privacy Policy

Already have an account?