Algebra Lineal-EXAMEN T4- Espacios Vectoriales

Algebra Lineal-EXAMEN T4- Espacios Vectoriales

University

10 Qs

quiz-placeholder

Similar activities

Limit Fungsi Trigonometri

Limit Fungsi Trigonometri

12th Grade - University

10 Qs

Final Exam Quiz 2

Final Exam Quiz 2

11th Grade - University

13 Qs

pree tes sifat-sifat bilangan berpangkat

pree tes sifat-sifat bilangan berpangkat

University

10 Qs

UH Limit Fungsi Aljabar

UH Limit Fungsi Aljabar

1st Grade - University

15 Qs

PHB 2 MATEMATIKA PEMINATAN KELAS X MIPA

PHB 2 MATEMATIKA PEMINATAN KELAS X MIPA

12th Grade - University

10 Qs

Racionalización mon y bin

Racionalización mon y bin

University

10 Qs

SOAL SELEKSI CALON GURU MATEMATIKA SMA

SOAL SELEKSI CALON GURU MATEMATIKA SMA

University

15 Qs

Complex Numbers

Complex Numbers

University

10 Qs

Algebra Lineal-EXAMEN T4- Espacios Vectoriales

Algebra Lineal-EXAMEN T4- Espacios Vectoriales

Assessment

Quiz

Mathematics

University

Hard

Used 15+ times

FREE Resource

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Determinar el valor de x para que el vector (1, x, 5) ∈ R3 pertenezca al subespacio < (1, 2, 3),(1, 1, 1) >

α = 2, β = −1 y x = 3

α = 3, β = −1 y x = 2

α = 2, β = 1 y x = -3

α = 3, β = 2 y x = 1

2.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Determinar los valores de a y b, si es que existen, para que

< (a, 1, −1, 2),(1, b, 0, 3) > = < (1, −1, 1, −2),(−2, 0, 0, −6) >

a = −1 y b = 0

a = 1 y b = 0

a = −1 y b = 1

a = 0 y b = 1

3.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Utilizar el proceso de Gram-Schmidt para transformar la siguiente base en  en una base ortonormal
 B={(5, 1, 1, 3), (9, 3, 3, 7), (5, 5, 1,5)}B=\left\{\left(5,\ 1,\ 1,\ -3\right),\ \left(9,\ 3,\ 3,\ -7\right),\ \left(-5,\ 5,\ -1,5\right)\right\}  

  {(56, 16, 16, 12), (12, 12, 12, 12), (16, 56, 16, 12)}\left\{\left(\frac{5}{6},\ \frac{1}{6},\ \frac{1}{6},\ -\frac{1}{2}\right),\ \left(-\frac{1}{2},\ \frac{1}{2},\ \frac{1}{2},\ -\frac{1}{2}\right),\ \left(\frac{1}{6},\ \frac{5}{6},\ -\frac{1}{6},\ \frac{1}{2}\right)\right\}  

 {(56, 16, 16, 12), (12, 12, 12, 12), (16, 56, 16, 12)}\left\{\left(\frac{5}{6},\ \frac{1}{6},\ \frac{1}{6},\ \frac{1}{2}\right),\ \left(-\frac{1}{2},\ \frac{1}{2},\ \frac{1}{2},\ -\frac{1}{2}\right),\ \left(\frac{1}{6},\ \frac{5}{6},\ -\frac{1}{6},\ \frac{1}{2}\right)\right\}  

 {(56, 16, 16, 12), (12, 12, 12, 12), (16, 56, 16, 12)}\left\{\left(\frac{5}{6},\ \frac{1}{6},\ \frac{1}{6},\ -\frac{1}{2}\right),\ \left(\frac{1}{2},\ \frac{1}{2},\ \frac{1}{2},\ -\frac{1}{2}\right),\ \left(\frac{1}{6},\ \frac{5}{6},\ -\frac{1}{6},\ \frac{1}{2}\right)\right\}  

 {(56, 16, 16, 12), (12, 12, 12, 12), (16, 56, 16, 12)}\left\{\left(\frac{5}{6},\ \frac{1}{6},\ \frac{1}{6},\ -\frac{1}{2}\right),\ \left(-\frac{1}{2},\ \frac{1}{2},\ \frac{1}{2},\ \frac{1}{2}\right),\ \left(\frac{1}{6},\ \frac{5}{6},\ -\frac{1}{6},\ \frac{1}{2}\right)\right\}  

4.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Hallar el vector vv⃗ tal que  w=2u+vw⃗=2u⃗+v⃗   

 u=(4,1)     w=(3,2)u⃗=(4,-1)\ \ \ \ \ w⃗=(3,2)  

 v=(5,4)v⃗=(-5,4)  

 v=(5,4)v⃗=(5,4)  

 v=(5,4)v⃗=(5,-4)  

 v=(5,4)v⃗=(-5,-4)  

5.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Hallar las coordenadas del vector    vv⃗ de tal manera que  w=3u1/5vw⃗=3u⃗-1/5v⃗   , siendo:  u=(1,2)     w=(3,5)u⃗=(1,2)\ \ \ \ \ w⃗=(-3,5)  

 v=(5, 30)v⃗=(5,\ 30)  

 v=(30,5)v⃗=(-30,5)  

 v=(30,5)v⃗=(30,5)  

 v=(30,5)v⃗=(30,-5)  

6.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Utilizar el proceso de Gram-Schmidt para transformar la siguiente base en  en una base ortonormal:  B=(0,2,3,3,1),(3,5,0,0,5),(2,1,4,1,3)B=(0,-2,-3,-3,1),(3,-5,0,0,5),(2,1,4,1,3)  

 {(0, 223, 323, 323), (3232832, 8526509, 4526509, 4526509, 506509), (5351545182, 910573582, 1935220742, 10332772590, 1313257530)}\left\{\left(0,\ -\frac{2}{\sqrt{23}},\ -\frac{3}{\sqrt{23}},\ \frac{3}{\sqrt{23}}\right),\ \left(\frac{3\sqrt{\frac{23}{283}}}{2},\ -\frac{85}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{50}{\sqrt{6509}}\right),\ \left(\frac{53\sqrt{\frac{5}{154518}}}{2},\ \frac{9\sqrt{\frac{105}{7358}}}{2},\ \frac{19\sqrt{\frac{35}{22074}}}{2},\ -\frac{1033}{2\sqrt{772590}},\ 131\sqrt{\frac{3}{257530}}\right)\right\}  

 {(0, 223, 323, 323), (3232832, 8526509, 4526509, 4526509, 506509), (5351545182, 910573582, 1935220742, 10332772590, 1313257530)}\left\{\left(0,\ -\frac{2}{\sqrt{23}},\ \frac{3}{\sqrt{23}},\ -\frac{3}{\sqrt{23}}\right),\ \left(\frac{3\sqrt{\frac{23}{283}}}{2},\ -\frac{85}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{50}{\sqrt{6509}}\right),\ \left(\frac{53\sqrt{\frac{5}{154518}}}{2},\ \frac{9\sqrt{\frac{105}{7358}}}{2},\ \frac{19\sqrt{\frac{35}{22074}}}{2},\ -\frac{1033}{2\sqrt{772590}},\ 131\sqrt{\frac{3}{257530}}\right)\right\}  

 {(0, 223, 323, 323), (3232832, 8526509, 4526509, 4526509, 506509), (5351545182, 910573582, 1935220742, 10332772590, 1313257530)}\left\{\left(0,\ \frac{2}{\sqrt{23}},\ -\frac{3}{\sqrt{23}},\ -\frac{3}{\sqrt{23}}\right),\ \left(\frac{3\sqrt{\frac{23}{283}}}{2},\ -\frac{85}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{50}{\sqrt{6509}}\right),\ \left(\frac{53\sqrt{\frac{5}{154518}}}{2},\ \frac{9\sqrt{\frac{105}{7358}}}{2},\ \frac{19\sqrt{\frac{35}{22074}}}{2},\ -\frac{1033}{2\sqrt{772590}},\ 131\sqrt{\frac{3}{257530}}\right)\right\}  

 B={(0, 223, 323, 323), (3232832, 8526509, 4526509, 4526509, 506509), (5351545182, 910573582, 1935220742, 10332772590, 1313257530)}B'=\left\{\left(0,\ -\frac{2}{\sqrt{23}},\ -\frac{3}{\sqrt{23}},\ -\frac{3}{\sqrt{23}}\right),\ \left(\frac{3\sqrt{\frac{23}{283}}}{2},\ -\frac{85}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{45}{2\sqrt{6509}},\ \frac{50}{\sqrt{6509}}\right),\ \left(\frac{53\sqrt{\frac{5}{154518}}}{2},\ \frac{9\sqrt{\frac{105}{7358}}}{2},\ \frac{19\sqrt{\frac{35}{22074}}}{2},\ -\frac{1033}{2\sqrt{772590}},\ 131\sqrt{\frac{3}{257530}}\right)\right\}  

7.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Comprobar que el vector  w=(4,7)w⃗=(4,7)   es combinación lineal de los vectores:  u=(2,1)u⃗=(2,1)   y  v=(0,5)v⃗=(0,5)   y, ¿Qué combinación forman? 

 w=2u+vw⃗=2u⃗+v⃗  

 w=u+2vw⃗=u⃗+2v⃗  

 w=2u+3vw⃗=2u⃗+3v⃗  

 w=u+vw⃗=u⃗+v⃗  

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

By signing up, you agree to our Terms of Service & Privacy Policy

Already have an account?