Derivadas de funciones algebraicas

Derivadas de funciones algebraicas

12th Grade

12 Qs

quiz-placeholder

Similar activities

Composición de funciones

Composición de funciones

10th Grade - University

10 Qs

Inverse Functions

Inverse Functions

8th - 12th Grade

12 Qs

Turunan Fungsi Aljabar

Turunan Fungsi Aljabar

10th - 12th Grade

10 Qs

Rational Function Graphs

Rational Function Graphs

11th - 12th Grade

10 Qs

Turunan Fungsi Aljabar

Turunan Fungsi Aljabar

12th Grade

10 Qs

Derivative Rules

Derivative Rules

11th - 12th Grade

10 Qs

Transformations of Sine & Cosine

Transformations of Sine & Cosine

9th - 12th Grade

14 Qs

Increasing and Decreasing Functions

Increasing and Decreasing Functions

12th Grade - University

10 Qs

Derivadas de funciones algebraicas

Derivadas de funciones algebraicas

Assessment

Quiz

Mathematics

12th Grade

Medium

Created by

Sergio de la Torre

Used 12+ times

FREE Resource

12 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

Daniela establece que: para calcular la derivada de una función basta con sustituir y calcular el límite en la expresión para la derivada; sin embargo, en ocasiones esto puede generar confusión al momento de realizar el desarrollo de toda la expresión. Por ello, es recomendable llevarlo a cabo en varios pasos: (ver imagen)

¿ cual de los siguientes pasos no es correcto?

I

II

III

IV

2.

FILL IN THE BLANK QUESTION

15 mins • 1 pt

Hallar la derivada usando la definición de  f(x)=x2+7f\left(x\right)=x^2+7  

3.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

La derivada de la función

 f(x)=9x34x2f\left(x\right)=\frac{9}{x^3}-\frac{4}{x^{-2}}  es

 dydx=27x48x\frac{\text{d}y}{\text{d}x}=-\frac{27}{x^4}-8x  

 dydx=27x2+8x3\frac{\text{d}y}{\text{d}x}=\frac{27}{x^2}+\frac{8}{x^3}  

 dydx=27x38x\frac{\text{d}y}{\text{d}x}=-\frac{27}{x^3}-\frac{8}{x}  

 dydx=27x+8x\frac{\text{d}y}{\text{d}x}=\frac{27}{x}+8x  

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Hallar la derivada  f(r)=3+2r23r+1f\left(r\right)=\frac{3+2r^2}{3r+1}  

 f(r)=(4r3)2(2r3)5f'\left(r\right)=\frac{\left(4r-3\right)^2}{\left(2r-3\right)^5}  

 f(r)=4r (3r+1)2f'\left(r\right)=\frac{4r\ }{\left(3r+1\right)^2}  

 f(r)=6r2+4r9(3r+1)2f'\left(r\right)=\frac{6r^2+4r-9}{\left(3r+1\right)^2}  

 f(r)=18r2+4r+9(3r+1)2f'\left(r\right)=\frac{18r^2+4r+9}{\left(3r+1\right)^2}  

5.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Hallar la derivada de  f(t)=(4t5)(t23)2f\left(t\right)=\left(4t-5\right)\left(t^2-3\right)^2  

 f(t)=4(t23)(5t25t3)f'\left(t\right)=4\left(t^2-3\right)\left(5t^2-5t-3\right)  

 f(t)=4(t2+3)(5t3)f'\left(t\right)=4\left(t^2+3\right)\left(5t-3\right)  

 f(t)=8t(t23)f'\left(t\right)=8t\left(t^2-3\right)  

 f(t)=(t23)(20t2+20t12)f'\left(t\right)=\left(t^2-3\right)\left(20t^2+20t-12\right)  

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Hallar la derivada  f(k)=1(2k511)4f\left(k\right)=\frac{1}{\left(2k^5-11\right)^4}  

 f(k)=40k4(2k511)5f'\left(k\right)=\frac{40k^4}{\left(2k^5-11\right)^5}  

 f(k)=40k4(2k511)5f'\left(k\right)=-\frac{40k^4}{\left(2k^5-11\right)^5}  

 f(k)=40k3(2k511)3f'\left(k\right)=-\frac{40k^3}{\left(2k^5-11\right)^3}  

 f(k)=40k4(2k57)3f'\left(k\right)=\frac{40k^4}{\left(2k^5-7\right)^3}  

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

La derivada de la función

 h(x)=12  x3 +5 x54x2+3h(x)=\frac{1}{2}\ \ ∜x^3\ +5\ ∛x^5-\frac{4}{∛x^2}+3  

 h´(x)=38x14+253x23+83x53h´\left(x\right)=\frac{3}{8}x^{\frac{1}{4}}+\frac{25}{3}x^{\frac{2}{3}}+\frac{8}{3x^{\frac{5}{3}}}  

 h´(x)=38x14+253x2383x53h´\left(x\right)=\frac{3}{8}x^{\frac{1}{4}}+\frac{25}{3}x^{\frac{2}{3}}-\frac{8}{3x^{\frac{5}{3}}}  

 h´(x)=38x14+253x23+83x53h´\left(x\right)=\frac{3}{8x^{\frac{1}{4}}}+\frac{25}{3}x^{\frac{2}{3}}+\frac{8}{3x^{\frac{5}{3}}}  

 h´(x)=38x14253x2383x53h´\left(x\right)=\frac{3}{8x^{\frac{1}{4}}}-\frac{25}{3}x^{\frac{2}{3}}-\frac{8}{3x^{\frac{5}{3}}}  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?