Vectors Progress Test

Vectors Progress Test

12th Grade

10 Qs

quiz-placeholder

Similar activities

Definite Integration

Definite Integration

12th Grade

10 Qs

LOGARITHMS

LOGARITHMS

9th - 12th Grade

12 Qs

Limit 1

Limit 1

11th - 12th Grade

10 Qs

Geometrija prostora i poliedri - zadatci s DM

Geometrija prostora i poliedri - zadatci s DM

10th - 12th Grade

8 Qs

Kuis 1: Relasi dan Fungsi

Kuis 1: Relasi dan Fungsi

12th Grade

10 Qs

Matemática Básica I

Matemática Básica I

12th Grade

10 Qs

KUIS STATISTIKA 1

KUIS STATISTIKA 1

12th Grade

10 Qs

REZAGADOS:Números racionales

REZAGADOS:Números racionales

11th - 12th Grade

10 Qs

Vectors Progress Test

Vectors Progress Test

Assessment

Quiz

Mathematics

12th Grade

Practice Problem

Hard

Created by

Peter Lego

Used 3+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Let u = i - 2j - 3k and v = 2i + j - k. The vector resolute of u perpendicular to v is:

 52-\frac{5}{2} (k)

-5(j)

-2i  -\frac{5}{2} j  -\frac{5}{2} k

i +  12-\frac{1}{2} j  12-\frac{1}{2} k 

2i +  \frac{1}{2} j  -\frac{1}{2} k

2.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

A unit vector in the opposite direction to 2i - 2j + k is:

-2i + 2j - k

 12\frac{1}{2}  (-2i + 2j - k)

 13\frac{1}{3}  (-2i + 2j - k)

 14\frac{1}{4}  (-2i + 2j - k)

 15\frac{1}{5}  (-2i + 2j - k)

3.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

The vectors a = i + j + 2k, b = -i + 2j - 2k, c = i + mk are linearly dependent, where m is a real constant. The value of m is:


13-\frac{1}{3}

0

23\frac{2}{3}

1

2

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

The vectors a = 2i + j - k, b = mi + nj, and c = -i - 3j + k are linearly dependent. If b is a unit vector, then the values of m and n could be:


m = 15m\ =\ -\frac{1}{\sqrt{5}} and n = 25n\ =\ \frac{2}{\sqrt{5}}

m = 15m\ =\ \frac{1}{\sqrt{5}} and n = 25n\ =\ \frac{2}{\sqrt{5}}

m = 15m\ =\ -\frac{1}{\sqrt{5}} and n = 25n\ =\ -\frac{2}{\sqrt{5}}

m = 13m\ =\ \frac{1}{\sqrt{3}} and n = 23n\ =\ -\frac{2}{\sqrt{3}}

m = 2 m\ =\ 2\ and n = 1n\ =\ 1

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

If the vectors a = mi m\sqrt{m}  j - 3k and b = mi +  m\sqrt{m}  j + 2k are perpendicular, then:

m = 0

m = 3 and m = -2

m = -3 and m = 2

m = 3

m = -2

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Let a = i + j, b = j + k, and c = 2i - j - 3k. Which of the following is false?

The vectors a and b have the same length

The angle between vectors a and b is  60\degree 

The vector a + c is parallel to the vector a - b

c = 2a - 3b

The vectors a, b, and c are linearly independent

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

A, B, and C are three points in space. To prove that ABC is a right-angled isosceles triangle, it is necessary to show:

ABAC = AB . AC\left|\overline{AB}\right|\left|\overline{AC}\right|\ =\ \overline{AB}\ .\ \overline{AC} and AB = BC\left|\overline{AB}\right|\ =\ \left|\overline{BC}\right|

ABAC = 2AB . AC\left|\overline{AB}\right|\left|\overline{AC}\right|\ =\ \sqrt{2}\overline{AB}\ .\ \overline{AC} and AB = BC\left|\overline{AB}\right|\ =\ \left|\overline{BC}\right|

AB = BC\left|\overline{AB}\right|\ =\ \left|\overline{BC}\right| and AB . AC = 0\overline{AB}\ .\ \overline{AC}\ =\ 0

AB+BC+CA = 0\overline{AB}+\overline{BC}+\overline{CA}\ =\ \overrightarrow{0} and BA . BC = 0\overline{BA}\ .\ \overline{BC}\ =\ 0

AB + BC + CA = 0\overline{AB}\ +\ \overline{BC}\ +\ \overline{CA}\ =\ \overrightarrow{0} and AB = BC\left|\overline{AB}\right|\ =\ \left|\overline{BC}\right|

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?