Search Header Logo

FIRST ORDER DIFFERENTIAL EQUATIONS

Authored by NURULEFA BM

Mathematics

12th Grade - University

Used 51+ times

FIRST ORDER DIFFERENTIAL EQUATIONS
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

What is the integrating factor for the differential equation:  1xdxdy11+x2y=x3\frac{1}{x}\frac{\text{d}x}{\text{d}y}-\frac{1}{1+x^2}y=x^3  

 ln(x2)\ln\left(x^2\right)  

 1x2-\frac{1}{x^2}  

 1x-\frac{1}{\sqrt{x}}  

 1x\frac{1}{\sqrt{x}}  

2.

MULTIPLE SELECT QUESTION

2 mins • 1 pt

Which of the following statement is TRUE.

dxdy2x=ex\frac{\text{d}x}{\text{d}y}-\frac{2}{x}=e^x is linear and its integrating factor is 1x2.-\frac{1}{x^2}.

dxdy4x=0 \frac{\text{d}x}{\text{d}y}-4x=0\ with condition y(1)=2y\left(1\right)=2 is linear and its solution is y=2x2.y=2x^2.

dxdy2x=ex \frac{\text{d}x}{\text{d}y}-\frac{2}{x}=e^x\ is linear and its solution is y=1x2.y=\frac{1}{x^2}.

y3dx4x2dy=0y^3dx-4x^2dy=0 is not exact.

3.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

 dxdy4y5+e2x=0\frac{\text{d}x}{\text{d}y}-4y-5+e^{-2x}=0  

The general solution for the above DE is,

 y=20+6e2x+Ce4xy=-20+6e^{-2x}+Ce^{4x}  

 y=54e4x+16e2x+Ce4xy=-\frac{5}{4}e^{-4x}+\frac{1}{6}e^{-2x}+Ce^{4x}  

 y=20e8x+e10x+Ce4xy=-20e^{-8x}+e^{-10x}+Ce^{-4x}  

 y=54+16e2x+Ce4xy=-\frac{5}{4}+\frac{1}{6}e^{-2x}+Ce^{-4x}  

4.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Integrating factor of the differential equation  xdydxy=sinxx\frac{\text{d}y}{\text{d}x}-y=\sin x  

 1x-\frac{1}{x}  

 1x\frac{1}{x}  

 lnx\ln\left|x\right|  

 1x2\frac{1}{x^2}  

5.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

The solution of linear differential equation  xdydx+2y=x2x\frac{\text{d}y}{\text{d}x}+2y=x^2  

 y=x2+c4x2y=\frac{x^2+c}{4x^2}  

 y=x24+cy=\frac{x^2}{4}+c  

 y=x4+cx2y=\frac{x^4+c}{x^2}  

 y=x4+c4x2y=\frac{x^4+c}{4x^2}  

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Which of the following mathematical models CANNOT be solved by using separation of variables

dPdt=kP\frac{\text{d}P}{\text{dt}}=kP

dTdt=k(TTm)\frac{dT}{dt}=k\left(T-Tm\right)

dAdt=kA\frac{dA}{dt}=kA

L dIdt+RI=E(t)L\ \frac{dI}{dt}+RI=E\left(t\right)

7.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

By separation of variables, solve the resulting equations  vv+1dv= 1ydy\int\ \frac{v}{v+1}dv=\int_{ }^{ }\ \frac{1}{y}dy\text{}  

 xylnxy+1=lny+C\frac{x}{y}-\ln\left|\frac{x}{y}+1\right|=\ln y+C  

 xy+lnxy+1=lny+C\frac{x}{y}+\ln\left|\frac{x}{y}+1\right|=\ln y+C  

 xy+x22y2=lny+C\frac{x}{y}+\frac{x^2}{2y^2}=\ln y+C  

 xyx22y2=lny+C\frac{x}{y}-\frac{x^2}{2y^2}=\ln y+C  

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?