Trigonometrijski prikaz kompleksnog broja

Trigonometrijski prikaz kompleksnog broja

12th Grade

10 Qs

quiz-placeholder

Similar activities

กราฟของฟังก์ชันตรีโกณมิติ

กราฟของฟังก์ชันตรีโกณมิติ

10th - 12th Grade

10 Qs

Inverse Trigonometric Values

Inverse Trigonometric Values

10th - 12th Grade

14 Qs

Writing Trig Equations from Graphs

Writing Trig Equations from Graphs

10th - 12th Grade

10 Qs

Inverse Trig Functions

Inverse Trig Functions

11th - 12th Grade

13 Qs

Trig Exact Values

Trig Exact Values

10th - 12th Grade

10 Qs

Complex Plane and Polar Form Summative Review

Complex Plane and Polar Form Summative Review

9th - 12th Grade

13 Qs

QUIZ CHAPTER 1

QUIZ CHAPTER 1

11th Grade - University

10 Qs

三角関数を極める①Training

三角関数を極める①Training

11th - 12th Grade

8 Qs

Trigonometrijski prikaz kompleksnog broja

Trigonometrijski prikaz kompleksnog broja

Assessment

Quiz

Mathematics

12th Grade

Medium

Created by

Aleksandra Kos

Used 6+ times

FREE Resource

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Zapišite kompleksan broj  z=i3z=i-\sqrt{3}  u trigonometrijskom obliku:

 z=2(cos π6+i sin π6)z=2\left(\cos\ \frac{\pi}{6}+i\ \sin\ \frac{\pi}{6}\right)  

 z=2(cos 5π6+i sin 5π6)z=-2\left(\cos\ \frac{5\pi}{6}+i\ \sin\ \frac{5\pi}{6}\right)  

 z=2(cos 5π6+i sin 5π6)z=2\left(\cos\ \frac{5\pi}{6}+i\ \sin\ \frac{5\pi}{6}\right)  

 z=2(cos π6+i sin π6)z=-2\left(\cos\ \frac{\pi}{6}+i\ \sin\ \frac{\pi}{6}\right)  

2.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Zapiši kompleksni broj  z=i z=-i\   u trigonometrijskom obliku:

 z=cos π2+ i sin π2z=\cos\ \frac{\pi}{2}+\ i\ \sin\ \frac{\pi}{2}  

 z=cos 3π2+i sin 3π2z=\cos\ \frac{3\pi}{2}+i\ \sin\ \frac{3\pi}{2}  

 z=cos 3π2i sin 3π2z=\cos\ \frac{3\pi}{2}-i\ \sin\ \frac{3\pi}{2}  

 z=cos π2+ i sin π2z=-\cos\ \frac{\pi}{2}+\ i\ \sin\ \frac{\pi}{2}  

3.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Za zadane kompleksne brojeve  z1=2(cos 7π6+ i sin 7π6)  i z2=3(cos 7π4+i sin 7π4)z_1=2\left(\cos\ \frac{7\pi}{6}+\ i\ \sin\ \frac{7\pi}{6}\right)\ \ i\ z_2=3\left(\cos\ \frac{7\pi}{4}+i\ \sin\ \frac{7\pi}{4}\right)  izračunaj umnožak  z1z2z_1\cdot z_2  

 z1z2=6(cos 35π12+ i sin 35π12)z_1\cdot z_2=6\left(\cos\ \frac{35\pi}{12}+\ i\ \sin\ \frac{35\pi}{12}\right)  

 z1z2=6(cos 17π12+ i sin 17π12)z_1\cdot z_2=6\left(\cos\ \frac{17\pi}{12}+\ i\ \sin\ \frac{17\pi}{12}\right)  

 z1z2=6(cos (7π12)+i sin (7π12))z_1\cdot z_2=6\left(\cos\ \left(-\frac{7\pi}{12}\right)+i\ \sin\ \left(-\frac{7\pi}{12}\right)\right)  

 z1z2=6(cos 11π12+ i sin 11π12)z_1\cdot z_2=6\left(\cos\ \frac{11\pi}{12}+\ i\ \sin\ \frac{11\pi}{12}\right)  

4.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Za zadane kompleksne brojeve  z1=2(cos 7π6+ i sin 7π6)  i z2=3(cos 7π4+i sin 7π4)z_1=2\left(\cos\ \frac{7\pi}{6}+\ i\ \sin\ \frac{7\pi}{6}\right)\ \ i\ z_2=3\left(\cos\ \frac{7\pi}{4}+i\ \sin\ \frac{7\pi}{4}\right)  izračunaj kvocijent  z1z2\frac{z_1}{z_2}  

 z1:z2=23(cos 35π12+ i sin 35π12)z_1:z_2=\frac{2}{3}\left(\cos\ \frac{35\pi}{12}+\ i\ \sin\ \frac{35\pi}{12}\right)  

 z1:z2=23(cos 17π12+ i sin 17π12)z_1:z_2=\frac{2}{3}\left(\cos\ \frac{17\pi}{12}+\ i\ \sin\ \frac{17\pi}{12}\right)  

 z1:z2=23(cos (7π12)+i sin (7π12))z_1:z_2=\frac{2}{3}\left(\cos\ \left(-\frac{7\pi}{12}\right)+i\ \sin\ \left(-\frac{7\pi}{12}\right)\right)  

 z1:z2=23(cos 11π12+ i sin 11π12)z_1:z_2=\frac{2}{3}\left(\cos\ \frac{11\pi}{12}+\ i\ \sin\ \frac{11\pi}{12}\right)  

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Zadan je kompleksan broj z=1616i z=-16-16i\   . Izračunaj  z13z^{13}  .

 z13=21172(cos π4+ i sin π4)z^{13}=2^{\frac{117}{2}}\left(\cos\ \frac{\pi}{4}+\ i\ \sin\ \frac{\pi}{4}\right)  

 z13=21172(cos 7π4+ i sin 7π4)z^{13}=2^{\frac{117}{2}}\left(\cos\ \frac{7\pi}{4}+\ i\ \sin\ \frac{7\pi}{4}\right)  

 z13= 21172(cos 3π4+ i sin 3π4)z^{13}=\ 2^{\frac{117}{2}}\left(\cos\ \frac{3\pi}{4}+\ i\ \sin\ \frac{3\pi}{4}\right)  

 z13=162(cos 7π4+ i sin 7π4)z^{13}=16\sqrt{2}\left(\cos\ \frac{7\pi}{4}+\ i\ \sin\ \frac{7\pi}{4}\right)  

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Zadan je kompleksan broj z=1616i z=-16-16i\   . Odredi  jedno od rješenja   4z^4\sqrt{z}  , ako je k=2.

 4z=298(cos 3π16+ i sin 3π16)^4\sqrt{z}=2^{\frac{9}{8}}\left(\cos\ \frac{3\pi}{16}+\ i\ \sin\ \frac{3\pi}{16}\right)  

 4z=298(cos 7π16+ i sin 7π16)^4\sqrt{z}=2^{\frac{9}{8}}\left(\cos\ \frac{7\pi}{16}+\ i\ \sin\ \frac{7\pi}{16}\right)  

 4z= 292(cos 19π16+ i sin 19π16)^4\sqrt{z}=\ 2^{\frac{9}{2}}\left(\cos\ \frac{19\pi}{16}+\ i\ \sin\ \frac{19\pi}{16}\right)  

 4z=298(cos 19π16+ i sin 19π16)^4\sqrt{z}=2^{\frac{9}{8}}\left(\cos\ \frac{19\pi}{16}+\ i\ \sin\ \frac{19\pi}{16}\right)  

7.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Ako je  z=2( cos 5π6+ i sin 5π6)z=2\left(\ \cos\ \frac{5\pi}{6}+\ i\ \sin\ \frac{5\pi}{6}\right) . Koliki je argument kompleksnog broja  z12z^{12}  ?

 5π2\frac{5\pi}{2}  

 10π10\pi  

 22  

 1010  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?