Derivadas exponenciales

Derivadas exponenciales

12th Grade - University

9 Qs

quiz-placeholder

Similar activities

Basic Integration

Basic Integration

University

10 Qs

Differentiation of Functions

Differentiation of Functions

11th - 12th Grade

10 Qs

Integration: Substitution Method

Integration: Substitution Method

12th Grade

11 Qs

Maclaurin Series 1

Maclaurin Series 1

12th Grade

10 Qs

Partial Derivatives

Partial Derivatives

University

10 Qs

Pre UPS1 AM025

Pre UPS1 AM025

12th Grade

9 Qs

Chain Rule

Chain Rule

11th - 12th Grade

12 Qs

C1 : Partial Differentiation (Set 1)

C1 : Partial Differentiation (Set 1)

University

10 Qs

Derivadas exponenciales

Derivadas exponenciales

Assessment

Quiz

Mathematics

12th Grade - University

Hard

Created by

CYNDI TRIGUEROS

Used 19+ times

FREE Resource

9 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

 deriva  f(x)=4x+ln(x)7x2+3xderiva\ \ f\left(x\right)=4^x+\ln\left(x\right)-7x^2+3x  

 y=16x1x14x+3y'=16^x-\frac{1}{x}-14x+3  

 y=16x+1x14x+3y'=16^x+\frac{1}{x}-14x+3  

 y=4xln(4)1x14x+3y'=4^x\ln\left(4\right)-\frac{1}{x}-14x+3  

 y=4xln(4)+1x14x+3y'=4^x\ln\left(4\right)+\frac{1}{x}-14x+3  

2.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

 y=52x+x+3ln(x)y=5\cdot2^x+\sqrt{x}+3\ln\left(x\right)  

 y=10xln(2)+12x+3xy'=10^x\ln\left(2\right)+\frac{1}{2\sqrt{x}}+\frac{3}{x}  

 y=52xln(2)+12x+3xy'=5\cdot2^x\ln\left(2\right)+\frac{1}{2\sqrt{x}}+\frac{3}{x}  

 y=20x+12x+3xy'=20^x+\frac{1}{2\sqrt{x}}+\frac{3}{x}  

 y=10xln(2)+1x+3xy'=10^x\ln\left(2\right)+\frac{1}{\sqrt{x}}+\frac{3}{x}  

3.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

 f(x)=2xxf\left(x\right)=\frac{2^x}{x}  

 f(x)=2xxln(2)1x2f'\left(x\right)=\frac{2^xx\ln\left(2\right)-1}{x^2}  

 f(x)=2x(xln(2)1)x2f'\left(x\right)=\frac{2^x\left(x\ln\left(2\right)-1\right)}{x^2}  

 f(x)=4xx1x2f'\left(x\right)=\frac{4^xx-1}{x^2}  

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

 y=3(2x52x+3)8y=3^{\left(2x^5-2x+3\right)^8}  

 y=24(2x52x+3)8(2x52x+3)7(10x42)ln(3)y=24^{\left(2x^5-2x+3\right)^8}\left(2x^5-2x+3\right)^7\left(10x^4-2\right)\ln\left(3\right)  

 y=83(2x52x+3)8(2x52x+3)7(10x42)ln(3)y=8\cdot3^{\left(2x^5-2x+3\right)^8}\left(2x^5-2x+3\right)^7\left(10x^4-2\right)\ln\left(3\right)  

 y=83(2x52x+3)8(2x52x+3)7(10x42)y=8\cdot3^{\left(2x^5-2x+3\right)^8}\left(2x^5-2x+3\right)^7\left(10x^4-2\right)  

 y=83(2x52x+3)8(10x42)ln(3)y=8\cdot3^{\left(2x^5-2x+3\right)^8}\left(10x^4-2\right)\ln\left(3\right)  

 y=24(2x52x+3)8(10x42)ln(3)y=24^{\left(2x^5-2x+3\right)^8}\left(10x^4-2\right)\ln\left(3\right)  

5.

MULTIPLE SELECT QUESTION

3 mins • 1 pt

 f(x)=(x6+5)23x2f\left(x\right)=\left(x^6+5\right)2^{3x^2}  

 f(x)=6x(x4+(x7+5x)ln(2))23x2f'\left(x\right)=6x\left(x^4+\left(x^7+5x\right)\ln\left(2\right)\right)2^{3x^2}  

 f(x)=6x(x3+(x75x)ln(2))23x2f'\left(x\right)=6x\left(x^3+\left(x^7-5x\right)\ln\left(2\right)\right)2^{3x^2}  

 f(x)=6x(x4+(x7+5)ln(2))23x2f'\left(x\right)=6x\left(x^4+\left(x^7+5\right)\ln\left(2\right)\right)2^{3x^2}  

 f(x)=(6x5+6x(x6+5)ln(2))23x2f'\left(x\right)=\left(6x^5+6x\left(x^6+5\right)\ln\left(2\right)\right)2^{3x^2}  

6.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

 y=xexy=\frac{x}{e^x}  

 y=1xe2xy'=\frac{1-x}{e^{2x}}  

 y=xe2xy'=\frac{-x}{e^{2x}}  

 y=1xexy'=\frac{1-x}{e^x}  

 y=exxe2xy'=\frac{e^x-x}{e^{2x}}  

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

 ln(x)ex\frac{\ln\left(x\right)}{e^x}  ¿Cuál es su derivada?

 1ln(x)ex\frac{1-\ln\left(x\right)}{e^x}  

 exxln(x)xe2x\frac{e^x-x\ln\left(x\right)}{xe^{2x}}  

 exln(x)xe2x\frac{e^x-\ln\left(x\right)}{xe^{2x}}  

 1xln(x)xex\frac{1-x\ln\left(x\right)}{xe^x}  

8.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

 f(x)=ln(ln(ln(x)))f\left(x\right)=\ln\left(\ln\left(\ln\left(x\right)\right)\right)  

 1x\frac{1}{x}  

 1ln(x)\frac{1}{\ln\left(x\right)}  

 xln(x)\frac{x}{\ln\left(x\right)}  

 1xln(x)\frac{1}{x\ln\left(x\right)}  

9.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

 Deriva f(x)=ex3xexexDeriva\ f\left(x\right)=\frac{e^{-x}-3x}{e^x-e^{-x}}  

 y=3xex3xex+3ex3ex2(exex)2y'=\frac{3xe^x-3xe^{-x}+3e^{-x}-3e^x-2}{\left(e^x-e^{-x}\right)^2}  

 y=3xex+3xex3ex+3ex2(exex)2y'=\frac{3xe^x+3xe^{-x}-3e^{-x}+3e^x-2}{\left(e^x-e^{-x}\right)^2}  

 y=3xex+3xex+3ex3ex2(exex)2y'=\frac{3xe^x+3xe^{-x}+3e^{-x}-3e^x-2}{\left(e^x-e^{-x}\right)^2}  

 y=3xex3xex3ex+3ex2(exex)2y'=\frac{3xe^x-3xe^{-x}-3e^{-x}+3e^x-2}{\left(e^x-e^{-x}\right)^2}