
Definiční obory funkcí

Quiz
•
Mathematics
•
10th Grade
•
Medium

Anonymous Anonymous
Used 1+ times
FREE Resource
10 questions
Show all answers
1.
MULTIPLE CHOICE QUESTION
30 sec • 1 pt
Jaký je definiční obor funkce k(x) = log(2x−1)?
(1/2,∞)
(1,2)
(0,1/2)
(1/2,1)
Answer explanation
Definiční obor funkce k(x) = log(2x−1) je určen podmínkou, že argument logaritmu musí být kladný: 2x−1 > 0, což dává x > 1/2. Tedy definiční obor je (1/2, ∞), což je správná odpověď.
2.
MULTIPLE CHOICE QUESTION
30 sec • 1 pt
Jaký je definiční obor funkce g(x) = 1/(x−3)?
R \{0}
R
R \{3}
R \{3,5}
Answer explanation
Definiční obor funkce g(x) = 1/(x−3) zahrnuje všechna reálná čísla kromě 3, protože pro x = 3 je jmenovatel nulový. Správná odpověď je tedy R \{3\}.
3.
MULTIPLE CHOICE QUESTION
30 sec • 1 pt
Najděte definiční obor funkce h(x) =√(x+4).
(−∞,−4)
[−4,∞)
[0,∞)
(−4,0)
Answer explanation
Definiční obor funkce h(x) =√(x+4) zahrnuje hodnoty, pro které je výraz pod odmocninou nezáporný. To znamená, že x+4 ≥ 0, tedy x ≥ -4. Správný definiční obor je [−4,∞).
4.
MULTIPLE CHOICE QUESTION
30 sec • 1 pt
Jaký je definiční obor funkce k(x) = tan(x)?
R \{(2n+1)π/2 | n ∈ Z}
R \{(2n)π | n ∈ Z}
R \{nπ | n ∈ Z}
R \{(2n+1)π | n ∈ Z}
Answer explanation
Definiční obor funkce k(x) = tan(x) zahrnuje všechna reálná čísla kromě hodnot, kde je tangens nedefinovaný, což jsou (2n+1)π/2 pro n ∈ Z. Tedy správná odpověď je R \ {(2n+1)π/2 | n ∈ Z}.
5.
MULTIPLE CHOICE QUESTION
30 sec • 1 pt
Jaký je definiční obor funkce k(x) = cot(x)?
R \{kπ | k ∈ Z}
R \{kπ +π | k ∈ Z}
R \{kπ +π/2 | k ∈ Z}
R \{kπ +3π/2 | k ∈ Z}
Answer explanation
Definiční obor funkce k(x) = cot(x) zahrnuje všechny reálné čísla kromě hodnot, kde je funkce nedefinovaná, což jsou kπ + π/2 pro k ∈ Z, protože cot(x) je nedefinována pro tyto hodnoty.
6.
MULTIPLE CHOICE QUESTION
30 sec • 1 pt
Určete definiční obor funkce m(x) = 1/(xˆ2−4).
R \{2,−2}
R \{0}
R \{3,−3}
R \{1,−1}
Answer explanation
Definiční obor funkce m(x) = 1/(x²−4) vylučuje hodnoty, kde jmenovatel je nula. To nastává pro x = 2 a x = -2. Proto je správný definiční obor R \ {2,−2}.
7.
MULTIPLE CHOICE QUESTION
30 sec • 1 pt
〈3,9)
(−∞,3〉
(−∞,−3〉∪〈3,∞)
(−3,3)
Answer explanation
Definiční obor funkce n(x) = √(x²−9) je určen podmínkou, že x²−9 ≥ 0. To platí pro x ≤ -3 a x ≥ 3, což dává obor (−∞,−3]∪[3,∞). Odpověď (−∞,−3]∪[3,∞) je tedy správná.
Create a free account and access millions of resources
Similar Resources on Wayground
10 questions
Literal Equations

Quiz
•
9th - 11th Grade
10 questions
Evaluating Functions

Quiz
•
9th - 12th Grade
14 questions
Nazywanie wyrażeń algebraicznych

Quiz
•
6th - 12th Grade
10 questions
Exponenciální a logaritmické funkce

Quiz
•
10th Grade
10 questions
Exponenciální a logaritmické funkce

Quiz
•
10th Grade
12 questions
Ice breaking - Math - Trigonometry

Quiz
•
10th - 11th Grade
12 questions
Zbiory. Działania na zbiorach.

Quiz
•
10th Grade
12 questions
Correlation Coefficient

Quiz
•
9th - 12th Grade
Popular Resources on Wayground
10 questions
Lab Safety Procedures and Guidelines

Interactive video
•
6th - 10th Grade
10 questions
Nouns, nouns, nouns

Quiz
•
3rd Grade
10 questions
Appointment Passes Review

Quiz
•
6th - 8th Grade
25 questions
Multiplication Facts

Quiz
•
5th Grade
11 questions
All about me

Quiz
•
Professional Development
22 questions
Adding Integers

Quiz
•
6th Grade
15 questions
Subtracting Integers

Quiz
•
7th Grade
20 questions
Grammar Review

Quiz
•
6th - 9th Grade
Discover more resources for Mathematics
13 questions
8th - Unit 1 Lesson 3

Quiz
•
9th - 12th Grade
16 questions
Segment Addition Postulate

Quiz
•
10th Grade
7 questions
EAHS PBIS Lesson- Bus

Lesson
•
9th - 12th Grade
16 questions
Segment Addition Postulate

Quiz
•
10th Grade
20 questions
Solving Multi-Step Equations

Quiz
•
10th Grade
20 questions
Midpoint and Distance

Quiz
•
10th Grade
12 questions
Conditional Statement Practice

Quiz
•
10th Grade
20 questions
Translations, Reflections & Rotations

Quiz
•
8th - 10th Grade