Search Header Logo

OLD FIL Unit 3

Authored by Dan Rubado

Other

9th Grade

CCSS covered

Used 6+ times

OLD FIL Unit 3
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

28 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

A valid argument is one where

If the premises are true, the conclusion must be true.

If the conclusion is true, the premises must be correct.

The premises are verifiably correct.

The conclusion is relevant to the argument.

Tags

CCSS.RL.8.1

CCSS.RI.8.1

CCSS.RI.8.8

CCSS.RL.9-10.1

CCSS.RI.7.8

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

A sound argument is one where

The argument is valid and the premises are true.

The premises are relevant to the topic of discussion.

The antecedent is affirmed.

The consequent is denied.

Tags

CCSS.RL.8.1

CCSS.RI.8.1

CCSS.RI.8.8

CCSS.RL.9-10.1

CCSS.RI.7.1

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Identify Modus Ponens.

If P, then Q.
Not Q.

Therefore, not P.

If P, then Q.
P.

Therefore, Q.

If P, then Q.

If Q, then R.

Therefore, if P then R.

If P, then Q.
Q.

Therefore, P.

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Identify Modus Tollens.

If P, then Q.
Not Q.

Therefore, not P.

If P, then Q.
P.

Therefore, Q.

If P, then Q.

If Q, then R.

Therefore, if P then R.

If P, then Q.
Not P.

Therefore, not Q.

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Identify Hypothetical Syllogism.

If P, then Q.
Not Q.

Therefore, not P.

If P, then Q.
P.

Therefore, Q.

If P, then Q.

If Q, then R.

Therefore, if P then R.

If P, then Q.
Not P.

Therefore, not Q.

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Identify Affirming the Consequent.

If P, then Q.
Not Q.

Therefore, not P.

If P, then Q.
P.

Therefore, Q.

If P, then Q.

If Q, then R.

Therefore, if P then R.

If P, then Q.
Q.

Therefore, P.

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Identify Denying the Antecedent.

If P, then Q.
Not Q.

Therefore, not P.

If P, then Q.
P.

Therefore, Q.

If P, then Q.

If Q, then R.

Therefore, if P then R.

If P, then Q.
Not P.

Therefore, not Q.

Tags

CCSS.7.SP.C.8B

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?