語言的人文與科學

語言的人文與科學

1st Grade

9 Qs

quiz-placeholder

Similar activities

Dino 6 U1 Vocab Days of the Week

Dino 6 U1 Vocab Days of the Week

KG - 6th Grade

10 Qs

English Quiz for Sakura

English Quiz for Sakura

1st Grade

10 Qs

MS1 Quiz#8 Phonics_Sports&Food

MS1 Quiz#8 Phonics_Sports&Food

KG - 7th Grade

11 Qs

Y2BI SPELLING-2NDWEEK JUL

Y2BI SPELLING-2NDWEEK JUL

KG - Professional Development

10 Qs

How do I feel

How do I feel

1st Grade

10 Qs

哈哈哈哈哈哈哈哈哈哈哈

哈哈哈哈哈哈哈哈哈哈哈

1st - 5th Grade

10 Qs

Unit 8

Unit 8

1st - 5th Grade

10 Qs

Review 1

Review 1

1st - 2nd Grade

10 Qs

語言的人文與科學

語言的人文與科學

Assessment

Quiz

English

1st Grade

Medium

Created by

植棻 張

Used 1+ times

FREE Resource

AI

Enhance your content

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

9 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

以下哪一個不是語音助理?

Siri

小冰同學

Alexa

Google scholar

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

蘋果IOS系統內建的語音助理 Siri 的全名是什麼?

Speak Information Reply Information

Speech Information with Robot Interface

Speech Interpretation and Recognition Interface

Steve Is Really Innovative

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

主要建構語音助理的技術包含語音辨識、語音合成,以下配對哪一個正確

語音辨識

text to speech

語音辨識

speech to text

語音合成

text to text

語音合成

speech to speech

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

中文為什麼較難做斷詞 (word segmentation)?

因為要算押韻

不同的斷詞

會有不同解釋

因為詞只能由

兩個字組成

標點符號會干擾

5.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

標點符號可以透露怎樣的訊息?

語氣

斷句

停頓

音調

性別

6.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

POS tagging 是指「詞性」的標注

以下哪一個字的 POS tags 不只一個

機車

lead

食物

言語

present

7.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

以下關於 WordNet「詞網」的敘述,哪一個是錯誤的

像字典一樣有許多詞

近一步分析

字詞的語義

將字詞之間的關係

結構化的呈現

只有中文的WordNet

用真實的語料

定義字詞的意思

Answer explanation

Media Image

8.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

以下有關上義詞 (hypernym) 的配對哪個錯誤?

cat -> animal

car -> vehicle

cake -> food

cap -> human

9.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

TFIDF 是一種詞頻分析的方式,他的全名是什麼?

Token Frequency - Important Document Family

Term Frequency - Inverted Document Frequency

Type Frequent Insert Domain Frequency

Total count oF Document Fact