Solving Linear Second Order Homogeneous Differential Equation

Solving Linear Second Order Homogeneous Differential Equation

12th Grade

5 Qs

quiz-placeholder

Similar activities

TPS ALJABAR

TPS ALJABAR

10th - 12th Grade

10 Qs

Similarity to Right Triangles

Similarity to Right Triangles

10th - 12th Grade

10 Qs

Conjuntos e Análise Combinatória

Conjuntos e Análise Combinatória

10th - 12th Grade

10 Qs

Integral Trigonometri

Integral Trigonometri

11th - 12th Grade

10 Qs

Hyperbolas

Hyperbolas

10th - 12th Grade

10 Qs

Quiz Teorema Pythagoras

Quiz Teorema Pythagoras

8th Grade - University

10 Qs

Trig Review

Trig Review

12th Grade

10 Qs

Teorema de Pitágoras

Teorema de Pitágoras

12th Grade

10 Qs

Solving Linear Second Order Homogeneous Differential Equation

Solving Linear Second Order Homogeneous Differential Equation

Assessment

Quiz

Mathematics

12th Grade

Hard

Created by

Azima Sahari

FREE Resource

5 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Find the solution to the differential equation y'' - 4y' + 4y = 0 using the Auxiliary Equation method.

y = c1*e^(2x) + c2*e^(2x)

y = c1*e^(2x) + c2*x*e^(2x)

y = c1*x*e^(2x) + c2*e^(2x)

y = c1*e^(2x) + c2*x^2*e^(2x)

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Solve the differential equation y'' + 9y = 0 using the Auxiliary Equation technique.

y = c1*sin(9x) + c2*cos(9x)

y = c1*cos(3x) + c2*sin(3x

y = c1*cos(9x) + c2*sin(9x)

y = c1*sin(3x) + c2*cos(3x

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Determine the general solution to the differential equation y'' - 6y' + 9y = 0 by applying the Auxiliary Equation approach.

y = c1 * e^(3x) + c2 * x * e^(3x)

y = c1 * e^(4x) + c2 * x * e^(3x)

y = c1 * e^(3x) + c2 * x^2 * e^(3x)

y = c1 * e^(2x) + c2 * x * e^(3x)

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Solve the differential equation y'' - 5y' + 6y = 0 by using the Auxiliary Equation method.

y = c1*e^(4x) + c2*e^(5x)

y = c1*e^(2x) + c2*e^(3x)

y = c1*e^(x) + c2*e^(6x)

y = c1*e^(2x) + c2*e^(4x)

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Determine the general solution to the differential equation y'' - 3y' + 2y = 0 by applying the Auxiliary Equation approach.

y = c1*e^(-x) + c2*e^(2x)

y = c1*e^(2x) + c2*e^(-x)

y = c1*e^(-x) + c2*x*e^(2x)

y = c1*e^(x) + c2*e^(-2x)