Matematika Kelas 9 - Persamaan Kuadrat Bag. 3

Matematika Kelas 9 - Persamaan Kuadrat Bag. 3

9th Grade

10 Qs

quiz-placeholder

Similar activities

Toán 8

Toán 8

3rd - 12th Grade

15 Qs

三年级数学练习

三年级数学练习

1st - 12th Grade

10 Qs

Quiz Topic 1 Day 4

Quiz Topic 1 Day 4

9th Grade

10 Qs

Linearity & continuity

Linearity & continuity

9th Grade

12 Qs

Funciones

Funciones

9th Grade

10 Qs

Pengayaan Transformasi

Pengayaan Transformasi

9th Grade

12 Qs

Aljabar

Aljabar

7th - 12th Grade

10 Qs

Coordinates KSSM Form 2

Coordinates KSSM Form 2

8th - 9th Grade

11 Qs

Matematika Kelas 9 - Persamaan Kuadrat Bag. 3

Matematika Kelas 9 - Persamaan Kuadrat Bag. 3

Assessment

Quiz

Mathematics

9th Grade

Practice Problem

Hard

Created by

nur baeti

FREE Resource

AI

Enhance your content

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

10 questions

Show all answers

1.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Apa yang disebut dengan kuadrat sempurna?

Persamaan yang berbentuk x2+2px+p2

Persamaan yang berbentuk x2-2px+p2

Persamaan yang berbentuk x 2+2px-p2

Persamaan yang berbentuk x2-2px-p2

Answer explanation

A kuadrat sempurna adalah persamaan yang berbentuk x kuadrat ditambah 2px ditambah P kuadrat. Ini adalah jawaban yang benar.

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Bagaimana cara menentukan akar persamaan kuadrat dengan kuadrat sempurna?

Menghilangkan kuadrat dari persamaan

Mengganti variabel x dengan akar persamaan

Menggunakan rumus kuadrat sempurna

Mengalikan kedua sisi persamaan dengan kuadrat sempurna

Answer explanation

To determine the square root of a perfect square equation, you can use the formula for perfect square trinomials. This formula states that if you have an equation in the form of (ax + b)^2 = c, then you can find the square root by taking the square root of c and subtracting b divided by 2a. In this case, the correct choice is 'Using the formula for perfect square trinomials'. This method allows you to find the square root of a perfect square equation without factoring or completing the square.

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Berapa nilai akar dari persamaan x2 = 9?

√9

√3

√6

√12

Answer explanation

The question asks for the value of x that satisfies the equation x^2 = 9. The correct choice is 'Akar 9' which means 'Square root of 9'. The square root of 9 is 3, so the answer is 3. This is because 3^2 = 9. Therefore, the correct answer is 'Akar 9'.

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Berapa nilai akar dari persamaan x2=12?

√2

√3

√4

√6

Answer explanation

To find the value of x in the equation x^2 = 12, we need to find the square root of 12. The square root of 12 is approximately 3.46. However, none of the options mention this value. Therefore, none of the options provide the correct answer explanation.

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Berapa nilai akar dari persamaan x2- 1 = 9?

√2

√3

√4

√6

Answer explanation

The given question asks for the value of x in the equation x^2 - 1 = 9. To find the value of x, we need to solve the equation. First, we add 1 to both sides of the equation to get x^2 = 10. Then, we take the square root of both sides to find that x = √10. So, the answer is not Akar 2, Akar 4, or Akar 6. The correct answer is Akar 3.

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Berapa nilai akar dari persamaan x2- 2x + 15 = 0?

√2

√3

√4

√5

Answer explanation

To find the roots of the given quadratic equation, we can use the quadratic formula. The discriminant of the equation is 2, which is positive. This means that the equation has two real and distinct roots. The correct root is Akar 5, as it satisfies the equation. Therefore, the value of the root of the equation x^2 - 2x + 15 = 0 is Akar 5.

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Bagaimana bentuk kuadrat sempurna dari persamaan x2 + 6x + 9 = 0?

x + 3

x - 3

x + 2

x - 2

Answer explanation

Kuadrat sempurna dalam persamaan x^2 + 6x + 9 = 0 adalah (x + 3)^2. Ini dapat diketahui dengan melihat koefisien x yang berbeda dengan koefisien konstanta dan memiliki dua akar yang sama. Dalam kasus ini, opsi yang benar adalah x + 3 karena menghasilkan persamaan kuadrat yang sama dengan persamaan awal.

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

By signing up, you agree to our Terms of Service & Privacy Policy

Already have an account?