Basic  ML: Day 1

Basic ML: Day 1

Professional Development

10 Qs

quiz-placeholder

Similar activities

Linear Regression

Linear Regression

Professional Development

10 Qs

AIML Module 5

AIML Module 5

Professional Development

10 Qs

“Hari 3 - Kuis Coding & Perkenalan AI”

“Hari 3 - Kuis Coding & Perkenalan AI”

University - Professional Development

10 Qs

Machine Learning

Machine Learning

Professional Development

10 Qs

JCDSOL 012 - Fun Review Pt. 1

JCDSOL 012 - Fun Review Pt. 1

Professional Development

10 Qs

Intro to Machine Learning

Intro to Machine Learning

Professional Development

10 Qs

Dasar Machine Learning dan AI

Dasar Machine Learning dan AI

Professional Development

10 Qs

"Byte-sized Brilliance: Unleash Your Tech IQ with this AI-some Q

"Byte-sized Brilliance: Unleash Your Tech IQ with this AI-some Q

Professional Development

10 Qs

Basic  ML: Day 1

Basic ML: Day 1

Assessment

Quiz

Computers

Professional Development

Hard

Created by

Reza RP

Used 1+ times

FREE Resource

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

What is machine learning?

A method for computers to analyze and interpret data.

A branch of artificial intelligence that involves the creation of algorithms that allow computers to learn from and make decisions or predictions based on data.

A type of software programming that focuses on automation.

A method for computers to process large amounts of data.

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

In the context of machine learning, what is the main difference between supervised and unsupervised learning?

Supervised learning requires human intervention, while unsupervised learning does not.

Supervised learning is used for classification problems, while unsupervised learning is used for regression problems.

Supervised learning uses labeled data for training, while unsupervised learning uses unlabeled data.

Supervised learning is a type of deep learning, while unsupervised learning is not.

Answer explanation

Supervised learning involves training a model on a dataset where the correct output is known for each example. In contrast, unsupervised learning involves training a model on a dataset where the correct output is not known, and the model must find structure in the data on its own.

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

The Ministry of Finance is developing a machine learning model to forecast future tax revenues based on economic indicators. In this scenario, what is the 'task'?

Collecting economic indicators.

Forecasting future tax revenues.

Developing the machine learning model.

Training the model on the dataset of economic indicators.

Answer explanation

he task is what the machine learning model is designed to accomplish. In this case, it's forecasting future tax revenues based on economic indicators.

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Sebuah kantor pajak ingin model untuk memprediksi fraud berdasarkan beberapa faktor. Kantor memiliki dataset historis besar tentang pengajuan pajak yang ditemukan bersifat penipuan atau tidak. Jenis pembelajaran mesin apa yang harus mereka gunakan?

Unsupervised Learning

Supervised Learning

Reinforcement Learning

Semi-Supervised Learning

Answer explanation

enis pembelajaran ini digunakan ketika Anda memiliki tugas prediksi yang spesifik dan data berlabel untuk melatih model.

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Bea Cukai ingin membangun model untuk memprediksi apakah pengiriman barang kemungkinan mengandung Barang Larangan/Pembatasan berdasarkan asal, isi, dan faktor lainnya. Bea Cukai memiliki dataset historis pengiriman barang yang ditemukan mengandung barang arang Larangan/Pembatasan atau tidak. Apa tugas dalam skenario ini?

Regresi

Clustering

Klasifikasi

Prediksi

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Bea Cukai mengembangkan model machine learning untuk mendeteksi fraud berdasarkan data pemerisaan fisik barang impor. Apa yang dimaksud dengan 'Experience' dalam skenario ini?

Dataset barang expor

Algoritma yang digunakan untuk melatih model.

Dataset data pemeriksaan fisik barang impor.

Penyelundupan barang

Answer explanation

Dalam konteks machine learning, 'Experience' biasanya merujuk kepada data yang digunakan untuk melatih model. Jadi, dalam kasus ini, 'pengalaman' adalah dataset data inspeksi barang impor.

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Kantor Pajak mengembangkan model machine learning untuk memprediksi pengajuan restitusi pajak yang 'valid' atau 'tidak valid'. Mengapa penting untuk memilih ukuran kinerja yang tepat dalam skenario ini?

menentukan seberapa cepat model dapat dipelajari.

mempengaruhi seberapa besar dataset yang diperlukan untuk melatih model.

menentukan seberapa akurat model dalam memprediksi pengajuan pajak yang 'valid' atau 'tidak valid'.

menentukan algoritma yang harus digunakan untuk melatih model.

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?