Permutations and Combinations

Permutations and Combinations

12th Grade

6 Qs

quiz-placeholder

Similar activities

Math Quiz 21-10-2021

Math Quiz 21-10-2021

3rd - 12th Grade

10 Qs

SUMA Y RESTA DE NÚMEROS ENTEROS CON PARÉNTESIS

SUMA Y RESTA DE NÚMEROS ENTEROS CON PARÉNTESIS

5th Grade - Professional Development

10 Qs

додавання і віднімання звичайних дробів

додавання і віднімання звичайних дробів

12th Grade

9 Qs

Logaritma

Logaritma

10th - 12th Grade

10 Qs

SM Permutation vs Combination

SM Permutation vs Combination

11th - 12th Grade

10 Qs

Ekponen

Ekponen

9th - 12th Grade

7 Qs

Add and Subtract Polynomials

Add and Subtract Polynomials

9th - 12th Grade

10 Qs

Exponent Rules

Exponent Rules

12th Grade

6 Qs

Permutations and Combinations

Permutations and Combinations

Assessment

Quiz

Mathematics

12th Grade

Hard

AQR.9-12.4.C

Standards-aligned

Created by

Alexander Cano

Used 22+ times

FREE Resource

6 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

How many ways can two jellybeans be chosen from a bag of 15 unique jellybeans. 

Tags

AQR.9-12.4.C

2.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

There are 18 people running in a cross country race. How many possible ways are there to place the runners in first, second, and third?
324
4896
816
54

Tags

AQR.9-12.4.C

3.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image
Determine whether the following scenarios are a permutation or a combination:
 
Selecting a lead and an understudy for a school play.
Combination
Permutation

Tags

AQR.9-12.4.C

4.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Media Image
Choosing 3 toppings for your sundae out of a list of 15.
Permutation
Combination
Neither

Tags

AQR.9-12.4.C

5.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

A disc jockey has to choose three songs for the last few minutes of his evening show. If there are nine songs that he feels are appropriate for that time slot, then how many ways can he choose and arrange to play in order three of those nine songs?

3P9=3!9!3P9=\frac{3!}{9!}

9P3=9!(93)!9P3=\frac{9!}{\left(9-3\right)!}

9P3=9!3!9P3=\frac{9!}{3!}

9C3=9!3!(93)!9C3=\frac{9!}{3!\left(9-3\right)!}

Tags

AQR.9-12.4.C

6.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Media Image
How many combinations of 4 letters are possible from the letters A B C D E?

Tags

AQR.9-12.4.C