DSP QUIZ DIF FFT

DSP QUIZ DIF FFT

University

6 Qs

quiz-placeholder

Similar activities

Kereskedési könyv tőkekövetelmény jelenleg és a jövőben

Kereskedési könyv tőkekövetelmény jelenleg és a jövőben

University - Professional Development

10 Qs

Workshop Day 2

Workshop Day 2

University

10 Qs

 Encryption Techniques & AES Cipher

Encryption Techniques & AES Cipher

University

10 Qs

IT8706 Software Testing

IT8706 Software Testing

University

10 Qs

IT8706 Software Testing

IT8706 Software Testing

University

10 Qs

S2 SLOT QUIZ

S2 SLOT QUIZ

University

10 Qs

QUIZ DSP RADIX 2 FFT

QUIZ DSP RADIX 2 FFT

University

10 Qs

DSP (FFT & DFT)

DSP (FFT & DFT)

University

10 Qs

DSP QUIZ DIF FFT

DSP QUIZ DIF FFT

Assessment

Quiz

Education

University

Easy

Created by

Ponnarasi N

Used 1+ times

FREE Resource

6 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

The radix-2 DIF FFT algorithm requires that the input sequence length be a power of:
1. 2
2. 3
3. 4
4. Any positive integer

2.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

The DIF FFT algorithm computes the DFT in:
1. Natural order
2. Bit-reversed order
3. Both natural and bit-reversed orders
4. None of the above

3.

MULTIPLE CHOICE QUESTION

10 sec • 1 pt

In the radix-2 DIF FFT algorithm, each stage consists of:
1. N/2 complex multiplications and N/2 complex additions
2. N/2 complex multiplications and N/4 complex additions
3. N/4 complex multiplications and N/2 complex additions
4. N/4 complex multiplications and N/4 complex additions

4.

MULTIPLE CHOICE QUESTION

20 sec • 1 pt

In the radix-2 DIF FFT algorithm, the butterfly structure is used to:
1. Combine two input sequences of length N/2 into one output sequence of length N
2. Split the input sequence of length N into two sequences of length N/2
3. Compute the DFT of the input sequence of length N
4. None of the above

5.

MULTIPLE CHOICE QUESTION

20 sec • 1 pt

The radix-2 DIF FFT algorithm is an example of a:
1. Divide-and-conquer algorithm
2. Dynamic programming algorithm
3. Greedy algorithm
4. None of the above

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Compute the 4-point DFT of the sequence x[n] = [1, 2, 3, 4] using the radix-2 DIF FFT algorithm.
1. [10, -2 + 2j, -2, -2 - 2j]
2. [10, -2 - 2j, -2, -2 + 2j]
3. [10, -2 + 2j, -2, 2 - 2j]
4. [10, -2 - 2j, -2, 2 + 2j]