Remainder Theorem

Remainder Theorem

10th - 11th Grade

10 Qs

quiz-placeholder

Similar activities

Synthetic and Long division

Synthetic and Long division

9th - 12th Grade

15 Qs

Quiz on Remainder and Factor Theorems 4/1/20

Quiz on Remainder and Factor Theorems 4/1/20

9th - 12th Grade

10 Qs

Synthetic Division

Synthetic Division

11th - 12th Grade

15 Qs

Polynomial Long Division Missing Terms

Polynomial Long Division Missing Terms

11th Grade

14 Qs

Diving Polynomials by Long Division and Synthetic Division

Diving Polynomials by Long Division and Synthetic Division

11th Grade

14 Qs

Long Division and Synthetic Division Polynomial

Long Division and Synthetic Division Polynomial

11th Grade

14 Qs

Dividing Polynomials by Polynomials

Dividing Polynomials by Polynomials

9th - 12th Grade

10 Qs

Synthetic Division

Synthetic Division

9th - 12th Grade

15 Qs

Remainder Theorem

Remainder Theorem

Assessment

Quiz

Mathematics

10th - 11th Grade

Easy

CCSS
HSA.APR.B.2

Standards-aligned

Created by

judy sotelo

Used 8+ times

FREE Resource

10 questions

Show all answers

1.

DRAW QUESTION

3 mins • 5 pts

Find the remainder when

f(x)  =  x3 + 3x2 + 3x + 1

is divided by (x + 1).

Media Image

Answer explanation

Equate the divisor to zero. 

x + 1  =  0

Solve for x. 

x  =  -1

To find the remainder, substitute -1 for x into the function f(x). 

f(-1)  =  (-1)3 + 3(-1)2 + 3(-1) + 1

f(-1)  =  -1 + 3(1) - 3 + 1

f(-1)  =  -1 + 3 - 3 + 1

f(-1)  =  0

So, the remainder is 0.

Tags

CCSS.HSA.APR.B.2

2.

DRAW QUESTION

3 mins • 5 pts

Find the remainder when

f(x)  =  x3 - 3x + 1

is divided by (2 - 3x).

Media Image

Answer explanation

Equate the divisor to zero. 

2 - 3x  =  0

Solve for x. 

-3x  =  -2

x  =  2/3

To find the remainder, substitute 2/3 for x into the function f(x). 

f(2/3)  =  (2/3)3 - 3(2/3) + 1

f(2/3)  =  8/27 - 2 + 1

f(2/3)  =  8/27 - 1

f(2/3)  =  8/27 - 27/27

f(2/3)  =  (8 - 27)/27

f(2/3)  =  -19/27

So, the remainder is -19/27.

Tags

CCSS.HSA.APR.B.2

3.

DRAW QUESTION

3 mins • 5 pts

For what value of k is the polynomial

2x4 + 3x3 + 2kx2 + 3x + 6

is divisible by (x + 2).

Media Image

Answer explanation

Let

f(x)  =  2x4 + 3x3 + 2kx2 + 3x + 6

Here, the divisor is (x + 2). 

Equate the divisor to zero. 

x + 2  =  0

Solve for x. 

x  =  -2

To find the remainder, substitute -2 for x into the function f(x). 

f(-2)  =  2(-2)4 + 3(-2)3 + 2k(-2)2 + 3(-2) + 6

f(-2)  =  2(16) + 3(-8) + 2k(4) - 6 + 6

f(-2)  =  32 - 24 + 8k - 6 + 6

f(-2)  =  8 + 8k

So, the remainder is (8 + 8k).

If f(x) is exactly divisible by (x + 2), then the remainder must be zero.

Then, 

8 + 8k  =  0

Solve for k.

8k  =  -8

k  =  -1

Therefore, f(x) is exactly divisible by (x+2) when k  =  –1.

Tags

CCSS.HSA.APR.B.2

4.

DRAW QUESTION

3 mins • 5 pts

Show that (x + 2) is a factor of 

x3 - 4x2 - 2x + 20

Media Image

Answer explanation

Let

f(x)  =  x3 - 4x2 - 2x + 20

Equate the factor (x + 2) to zero.

x + 2  =  0

Solve for x. 

x  =  -2

By Factor Theorem,

(x + 2) is factor of f(x), if f(-2)  =  0

Then, 

f(-2)  =  (-2)3 - 4(-2)2 - 2(-2) + 20

f(-2)  =  -8 - 4(4) + 4 + 20

f(-2)  =  -8 - 16 + 4 + 20

f(-2)  =  0

Therefore, (x + 2) is a factor of x3 - 4x2 - 2x + 20. 

Tags

CCSS.HSA.APR.B.2

5.

DRAW QUESTION

3 mins • 5 pts

Is (3x - 2) a factor of 3x3 + x2 - 20x + 12 ?

Media Image

Answer explanation

Let

f(x)  =  3x3 + x2 - 20x + 12

Equate the factor (3x + 2) to zero.

3x - 2  =  0

Solve for x. 

3x  =  2

x  =  2/3

By Factor Theorem,

(3x - 2) is factor of f(x), if f(2/3)  =  0

Then, 

f(2/3)  =  3(2/3)3 + (2/3)2 - 20(2/3) + 12

f(2/3)  =  3(8/27) + 4/9 - 40/3 + 12

f(2/3)  =  8/9 + 4/9 - 40/3 + 12

f(2/3)  =  8/9 + 4/9 - 120/9 + 108/9

f(2/3)  =  (8 + 4 - 120 + 108) / 9

f(2/3)  =  (120 - 120) / 9

f(2/3)  =  0

Therefore, (3x - 2) is a factor of 3x3 + x2 - 20x + 12. 

Tags

CCSS.HSA.APR.B.2

6.

DRAW QUESTION

3 mins • 5 pts

Find the value of m, if (x - 2) is a factor of the polynomial

2x3 - 6x2 + mx + 4

Media Image

Answer explanation

Let

f(x)  =  2x3 - 6x2 + mx + 4

Equate the factor (x - 2) to zero.

x - 2  =  0

Solve for x. 

x  =  2

By Factor Theorem,

(x - 2) is factor of f(x), if f(2)  =  0

Then, 

f(2)  =  0

2(2)3 - 6(2)2 + m(2) + 4  =  0

f(2)  =  2(8) - 6(4) + 2m + 4  =  0

f(2)  =  16 - 24 + 2m + 4  =  0

f(2)  =  2m - 4  =  0

2m  =  4

m  =  2

Therefore (x - 2) is a factor of f(x), when m  =  2. 

Tags

CCSS.HSA.APR.B.2

7.

DRAW QUESTION

3 mins • 5 pts

Media Image

Answer explanation

f(3)=3(3)^3−4(3)^2+(3)−2

= 3(27) - 4(9) + 3 - 2

= 81-36 + 1

= 46

Tags

CCSS.HSA.APR.B.2

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?