Reglas de Derivación y Derivadas Elementales

Reglas de Derivación y Derivadas Elementales

1st Grade

10 Qs

quiz-placeholder

Similar activities

KUIZ MATEMATIK TAMBAHAN (BAB 1: FUNGSI)

KUIZ MATEMATIK TAMBAHAN (BAB 1: FUNGSI)

1st Grade - University

10 Qs

Productos Notables

Productos Notables

1st - 2nd Grade

11 Qs

Funciones exponenciales

Funciones exponenciales

1st - 10th Grade

15 Qs

Técnicas de Integración

Técnicas de Integración

1st Grade

10 Qs

Funciones trascendentes y especiales

Funciones trascendentes y especiales

1st Grade

10 Qs

Suku Banyak

Suku Banyak

1st Grade

10 Qs

Teste de matemática -9ºano - fevereiro

Teste de matemática -9ºano - fevereiro

1st Grade

15 Qs

Continuidad y asíntotas: 6A

Continuidad y asíntotas: 6A

1st - 5th Grade

10 Qs

Reglas de Derivación y Derivadas Elementales

Reglas de Derivación y Derivadas Elementales

Assessment

Quiz

Mathematics

1st Grade

Hard

Created by

J Atilio Guerrero

Used 1+ times

FREE Resource

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Si   ff  y  gg  son funciones diferenciables, entonces   f. gf.\ g  es diferenciable y   [f(x).g(x)] =\left[f\left(x\right).g\left(x\right)\right]'\ =  

 f(x).g(x)f'\left(x\right).g'\left(x\right)  

 f(x)g(x)f(x)g(x)f'\left(x\right)g\left(x\right)-f\left(x\right)g'\left(x\right)  

 g(x)f(x)+g(x)f(x)g'\left(x\right)f\left(x\right)+g\left(x\right)f'\left(x\right)  

 f(x)g(x)+f(x)g(x)f'\left(x\right)g'\left(x\right)+f\left(x\right)g\left(x\right)  

2.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Si   ff  y  gg  son funciones diferenciables, entonces   fg\frac{f}{g}  es diferenciable y   [f(x)g(x)] =\left[\frac{f\left(x\right)}{g\left(x\right)}\right]'\ =  

 f(x)g(x)\frac{f'\left(x\right)}{g'\left(x\right)}  

 f(x)g(x)f(x)g(x)f'\left(x\right)g\left(x\right)-f\left(x\right)g'\left(x\right)  

 (g(x)f(x)+g(x)f(x))g2(x)\frac{\left(g'\left(x\right)f\left(x\right)+g\left(x\right)f'\left(x\right)\right)}{g^2\left(x\right)}  

 f(x)g(x)f(x)g(x)g2(x)\frac{f'\left(x\right)g\left(x\right)-f\left(x\right)g'\left(x\right)}{g^2\left(x\right)}  

3.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Si   ff  y  gg  son funciones diferenciables, entonces   f gf\circ\ g  es diferenciable y   Dx[(f g)(x)]=D_x\left[\left(f\circ\ g\right)\left(x\right)\right]=  

 f(g(x))f'\left(g\left(x\right)\right)  

 g(f(x))f(x)g'\left(f\left(x\right)\right)f'\left(x\right)  

 f(g(x))f'\left(g\left(x\right)\right)  

 f(g(x))g(x)f'\left(g\left(x\right)\right)g'\left(x\right)  

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 Dx[loga(x)]=D_x\left[\log_a\left(x\right)\right]=  

 1x\frac{1}{x}  

 axln(a)a^x\ln\left(a\right)  

 ln(a)x\frac{\ln\left(a\right)}{x}  

 1xln(a)\frac{1}{x\ln\left(a\right)}  

5.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

 ddx[csc(x)]=\frac{\text{d}}{\text{d}x}\left[\csc\left(x\right)\right]=  

 csc2(x)-\csc^2\left(x\right)  

 csc(x)cot(x)\csc\left(x\right)\cot\left(x\right)  

 cot(x)csc(x)-\cot\left(x\right)\csc\left(x\right)  

 cot2(x)-\cot^2\left(x\right)  

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 Dt[at]=D_t\left[a^t\right]=  

 ata^t  

 atln(a)\frac{a^t}{\ln\left(a\right)}  

 1at ln(a)\frac{1}{a^t\ \ln\left(a\right)}  

 at ln(a)a^{t\ }\ln\left(a\right)  

7.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

 ddx[arctan(f(x))]=\frac{d}{dx}\left[\arctan\left(f\left(x\right)\right)\right]=  

 11+x2\frac{1}{1+x^2}  

 f(x)1+x2\frac{f\left(x\right)}{1+x^2}  

 f(x)1+x2\frac{f'\left(x\right)}{1+x^2}  

 f(x)1+f2(x)\frac{f'\left(x\right)}{1+f^2\left(x\right)}  

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

By signing up, you agree to our Terms of Service & Privacy Policy

Already have an account?