Reglas de Derivación y Derivadas Elementales

Reglas de Derivación y Derivadas Elementales

1st Grade

10 Qs

quiz-placeholder

Similar activities

Fungsi dan Fungsi Kuadratik

Fungsi dan Fungsi Kuadratik

1st - 12th Grade

15 Qs

OPERASI SET

OPERASI SET

1st Grade

15 Qs

Fungsi Invers

Fungsi Invers

1st Grade

10 Qs

Polinomial UK2 MAN 2 Banjarnegara

Polinomial UK2 MAN 2 Banjarnegara

KG - University

15 Qs

Fungsi Komposisi

Fungsi Komposisi

1st Grade

10 Qs

Propiedades de Derivadas I

Propiedades de Derivadas I

1st Grade - Professional Development

9 Qs

Komposis fungsi

Komposis fungsi

1st Grade

10 Qs

latihan 1.2.3

latihan 1.2.3

1st - 2nd Grade

10 Qs

Reglas de Derivación y Derivadas Elementales

Reglas de Derivación y Derivadas Elementales

Assessment

Quiz

Mathematics

1st Grade

Hard

Created by

J Atilio Guerrero

Used 1+ times

FREE Resource

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Si   ff  y  gg  son funciones diferenciables, entonces   f. gf.\ g  es diferenciable y   [f(x).g(x)] =\left[f\left(x\right).g\left(x\right)\right]'\ =  

 f(x).g(x)f'\left(x\right).g'\left(x\right)  

 f(x)g(x)f(x)g(x)f'\left(x\right)g\left(x\right)-f\left(x\right)g'\left(x\right)  

 g(x)f(x)+g(x)f(x)g'\left(x\right)f\left(x\right)+g\left(x\right)f'\left(x\right)  

 f(x)g(x)+f(x)g(x)f'\left(x\right)g'\left(x\right)+f\left(x\right)g\left(x\right)  

2.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Si   ff  y  gg  son funciones diferenciables, entonces   fg\frac{f}{g}  es diferenciable y   [f(x)g(x)] =\left[\frac{f\left(x\right)}{g\left(x\right)}\right]'\ =  

 f(x)g(x)\frac{f'\left(x\right)}{g'\left(x\right)}  

 f(x)g(x)f(x)g(x)f'\left(x\right)g\left(x\right)-f\left(x\right)g'\left(x\right)  

 (g(x)f(x)+g(x)f(x))g2(x)\frac{\left(g'\left(x\right)f\left(x\right)+g\left(x\right)f'\left(x\right)\right)}{g^2\left(x\right)}  

 f(x)g(x)f(x)g(x)g2(x)\frac{f'\left(x\right)g\left(x\right)-f\left(x\right)g'\left(x\right)}{g^2\left(x\right)}  

3.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Si   ff  y  gg  son funciones diferenciables, entonces   f gf\circ\ g  es diferenciable y   Dx[(f g)(x)]=D_x\left[\left(f\circ\ g\right)\left(x\right)\right]=  

 f(g(x))f'\left(g\left(x\right)\right)  

 g(f(x))f(x)g'\left(f\left(x\right)\right)f'\left(x\right)  

 f(g(x))f'\left(g\left(x\right)\right)  

 f(g(x))g(x)f'\left(g\left(x\right)\right)g'\left(x\right)  

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 Dx[loga(x)]=D_x\left[\log_a\left(x\right)\right]=  

 1x\frac{1}{x}  

 axln(a)a^x\ln\left(a\right)  

 ln(a)x\frac{\ln\left(a\right)}{x}  

 1xln(a)\frac{1}{x\ln\left(a\right)}  

5.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

 ddx[csc(x)]=\frac{\text{d}}{\text{d}x}\left[\csc\left(x\right)\right]=  

 csc2(x)-\csc^2\left(x\right)  

 csc(x)cot(x)\csc\left(x\right)\cot\left(x\right)  

 cot(x)csc(x)-\cot\left(x\right)\csc\left(x\right)  

 cot2(x)-\cot^2\left(x\right)  

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 Dt[at]=D_t\left[a^t\right]=  

 ata^t  

 atln(a)\frac{a^t}{\ln\left(a\right)}  

 1at ln(a)\frac{1}{a^t\ \ln\left(a\right)}  

 at ln(a)a^{t\ }\ln\left(a\right)  

7.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

 ddx[arctan(f(x))]=\frac{d}{dx}\left[\arctan\left(f\left(x\right)\right)\right]=  

 11+x2\frac{1}{1+x^2}  

 f(x)1+x2\frac{f\left(x\right)}{1+x^2}  

 f(x)1+x2\frac{f'\left(x\right)}{1+x^2}  

 f(x)1+f2(x)\frac{f'\left(x\right)}{1+f^2\left(x\right)}  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?