Search Header Logo

INDEFINITE INTEGRAL

Authored by Swagata Biswas

Mathematics

12th Grade

Used 4+ times

INDEFINITE INTEGRAL
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

26 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

 x21(x4+3x2+1)Tan1(x2+1x) \int_{ }^{ }\frac{x^2-1}{\left(x^4+3x^2+1\right)Tan^{-1}\left(\frac{x^2+1}{x}\right)}\   dx is equal to

 Tan1(x+1x)+cTan^{-1}\left(x+\frac{1}{x}\right)+c  

 loge(Tan1(x+1x))+c\log_e\left(Tan^{-1}\left(x+\frac{1}{x}\right)\right)+c  

 loge(tan(x2+1x))+c\log_e\left(\tan\left(\frac{x^2+1}{x}\right)\right)+c  

 (x+1x)Tan1(x+1x)+c\left(x+\frac{1}{x}\right)Tan^{-1}\left(x+\frac{1}{x}\right)+c  

2.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

The value of the integral cos3x+cos5xsin2x+sin4xdx is\int_{ }^{ }\frac{\cos^3x+\cos^5x}{\sin^2x+\sin^4x}dx\ is  

 sinx6Tab1(sin x)+c\sin x-6Tab^{-1}\left(\sin\ x\right)+c  

 sinx2(sinx)1+c\sin x-2\left(\sin x\right)^{-1}+c  

 sinx2(sinx)16Tan1(sinx)+c\sin x-2\left(\sin x\right)^{-1}-6Tan^{-1}\left(\sin x\right)+c  

 sinx2(sinx)1+5Tan1(sinx)+c\sin x-2\left(\sin x\right)^{-1}+5Tan^{-1}\left(\sin x\right)+c  

3.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

 x+1x(1+xex)2dx=logexex1+xex+f(x)+c,\int_{ }^{ }\frac{x+1}{x\left(1+xe^x\right)^2}dx=\log_e\left|\frac{xe^x}{1+xe^x}\right|+f\left(x\right)+c,  then f(x) is.

 11+xex\frac{1}{1+xe^x}  

 x1+xex\frac{x}{1+xe^x}  

 xex1+x\frac{xe^x}{1+x}  

 xex1+ex\frac{xe^x}{1+e^x}  

4.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

 x1(x+1)x(x2+x+1)dx is\int_{ }^{ }\frac{x-1}{\left(x+1\right)\sqrt{x\left(x^2+x+1\right)}}dx\ is  

 Tan1(x2+x+1x)+cTan^{-1}\left(\frac{x^2+x+1}{x}\right)+c  

 2Tan1(x2+x+1x)+c2Tan^{-1}\left(\frac{x^2+x+1}{x}\right)+c  

 Tan1(x2+x+1x)+cTan^{-1}\left(\frac{\sqrt{x^2+x+1}}{x}\right)+c  

 2Tan1x+1x+1+c2Tan^{-1}\sqrt{x+\frac{1}{x}+1}+c  

5.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

 (xx3)13x4dx=\int_{ }^{ }\frac{\left(x-x^3\right)^{\frac{1}{3}}}{x^4}dx=  

 38(1x21)43+c\frac{3}{8}\left(\frac{1}{x^2}-1\right)^{\frac{4}{3}}+c  

 38(1x2+1)43+c-\frac{3}{8}\left(\frac{1}{x^2}+1\right)^{\frac{4}{3}}+c  

 38(1x21)43+c-\frac{3}{8}\left(\frac{1}{x^2}-1\right)^{\frac{4}{3}}+c  

 34(11x2)43+c-\frac{3}{4}\left(1-\frac{1}{x^2}\right)^{\frac{4}{3}}+c  

6.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

 If y(xy)2=x, then dxx3yequalsIf\ y\left(x-y\right)^2=x,\ then\ \int_{ }^{ }\frac{dx}{x-3y}equals  

 x2loge{(xy)2+1}+c\frac{x}{2}\log_e\left\{\left(x-y\right)^2+-1\right\}+c  

 12loge{(xy)21}+c\frac{1}{2}\log_e\left\{\left(x-y\right)^2-1\right\}+c  

 x+12loge{(xy)2+1}+cx+\frac{1}{2}\log_e\left\{\left(x-y\right)^2+1\right\}+c  

 loge{(xy)21}+c\log_e\left\{\left(x-y\right)^2-1\right\}+c  

7.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

 If (1x1+x)12 dxx=2 cos1xϕ(x)+cIf\ \int_{ }^{ }\left(\frac{1-\sqrt{x}}{1+\sqrt{x}}\right)^{\frac{1}{2}}\ \frac{dx}{x}=2\ \cos^{-1}\sqrt{x}-\phi\left(x\right)+c  , then  ϕ(x) equals\phi\left(x\right)\ equals  

 loge(11xx)\log_e\left(\frac{1-\sqrt{1-x}}{\sqrt{x}}\right)  

 12loge(1+1xx)\frac{1}{2}\log_e\left(\frac{1+\sqrt{1-x}}{\sqrt{x}}\right)  

 2loge(11xx)2\log_e\left(\frac{1-\sqrt{1-x}}{\sqrt{x}}\right)  

 2loge(1+1xx)2\log_e\left(\frac{1+\sqrt{1-x}}{\sqrt{x}}\right)  

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?