INDEFINITE INTEGRAL

INDEFINITE INTEGRAL

12th Grade

26 Qs

quiz-placeholder

Similar activities

BASIC TRIG IDENTITIES

BASIC TRIG IDENTITIES

9th - 12th Grade

25 Qs

Topic 6 Review Trigonometry

Topic 6 Review Trigonometry

9th - 12th Grade

22 Qs

Review for chapter 0, 4, 5

Review for chapter 0, 4, 5

10th - 12th Grade

23 Qs

5.1-5.3 Quiz Trigonometry Review

5.1-5.3 Quiz Trigonometry Review

9th - 12th Grade

22 Qs

Quiz PAS MTK minat TRIXIXIXIXIE

Quiz PAS MTK minat TRIXIXIXIXIE

12th Grade

22 Qs

THS Applied Geometry Chapter 10 Test

THS Applied Geometry Chapter 10 Test

9th - 12th Grade

21 Qs

NGUYÊN HÀM

NGUYÊN HÀM

12th Grade

24 Qs

4R 5.2-5.5 Trig Intro

4R 5.2-5.5 Trig Intro

11th - 12th Grade

22 Qs

INDEFINITE INTEGRAL

INDEFINITE INTEGRAL

Assessment

Quiz

Mathematics

12th Grade

Hard

Created by

Swagata Biswas

Used 4+ times

FREE Resource

26 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

 x21(x4+3x2+1)Tan1(x2+1x) \int_{ }^{ }\frac{x^2-1}{\left(x^4+3x^2+1\right)Tan^{-1}\left(\frac{x^2+1}{x}\right)}\   dx is equal to

 Tan1(x+1x)+cTan^{-1}\left(x+\frac{1}{x}\right)+c  

 loge(Tan1(x+1x))+c\log_e\left(Tan^{-1}\left(x+\frac{1}{x}\right)\right)+c  

 loge(tan(x2+1x))+c\log_e\left(\tan\left(\frac{x^2+1}{x}\right)\right)+c  

 (x+1x)Tan1(x+1x)+c\left(x+\frac{1}{x}\right)Tan^{-1}\left(x+\frac{1}{x}\right)+c  

2.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

The value of the integral cos3x+cos5xsin2x+sin4xdx is\int_{ }^{ }\frac{\cos^3x+\cos^5x}{\sin^2x+\sin^4x}dx\ is  

 sinx6Tab1(sin x)+c\sin x-6Tab^{-1}\left(\sin\ x\right)+c  

 sinx2(sinx)1+c\sin x-2\left(\sin x\right)^{-1}+c  

 sinx2(sinx)16Tan1(sinx)+c\sin x-2\left(\sin x\right)^{-1}-6Tan^{-1}\left(\sin x\right)+c  

 sinx2(sinx)1+5Tan1(sinx)+c\sin x-2\left(\sin x\right)^{-1}+5Tan^{-1}\left(\sin x\right)+c  

3.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

 x+1x(1+xex)2dx=logexex1+xex+f(x)+c,\int_{ }^{ }\frac{x+1}{x\left(1+xe^x\right)^2}dx=\log_e\left|\frac{xe^x}{1+xe^x}\right|+f\left(x\right)+c,  then f(x) is.

 11+xex\frac{1}{1+xe^x}  

 x1+xex\frac{x}{1+xe^x}  

 xex1+x\frac{xe^x}{1+x}  

 xex1+ex\frac{xe^x}{1+e^x}  

4.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

 x1(x+1)x(x2+x+1)dx is\int_{ }^{ }\frac{x-1}{\left(x+1\right)\sqrt{x\left(x^2+x+1\right)}}dx\ is  

 Tan1(x2+x+1x)+cTan^{-1}\left(\frac{x^2+x+1}{x}\right)+c  

 2Tan1(x2+x+1x)+c2Tan^{-1}\left(\frac{x^2+x+1}{x}\right)+c  

 Tan1(x2+x+1x)+cTan^{-1}\left(\frac{\sqrt{x^2+x+1}}{x}\right)+c  

 2Tan1x+1x+1+c2Tan^{-1}\sqrt{x+\frac{1}{x}+1}+c  

5.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

 (xx3)13x4dx=\int_{ }^{ }\frac{\left(x-x^3\right)^{\frac{1}{3}}}{x^4}dx=  

 38(1x21)43+c\frac{3}{8}\left(\frac{1}{x^2}-1\right)^{\frac{4}{3}}+c  

 38(1x2+1)43+c-\frac{3}{8}\left(\frac{1}{x^2}+1\right)^{\frac{4}{3}}+c  

 38(1x21)43+c-\frac{3}{8}\left(\frac{1}{x^2}-1\right)^{\frac{4}{3}}+c  

 34(11x2)43+c-\frac{3}{4}\left(1-\frac{1}{x^2}\right)^{\frac{4}{3}}+c  

6.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

 If y(xy)2=x, then dxx3yequalsIf\ y\left(x-y\right)^2=x,\ then\ \int_{ }^{ }\frac{dx}{x-3y}equals  

 x2loge{(xy)2+1}+c\frac{x}{2}\log_e\left\{\left(x-y\right)^2+-1\right\}+c  

 12loge{(xy)21}+c\frac{1}{2}\log_e\left\{\left(x-y\right)^2-1\right\}+c  

 x+12loge{(xy)2+1}+cx+\frac{1}{2}\log_e\left\{\left(x-y\right)^2+1\right\}+c  

 loge{(xy)21}+c\log_e\left\{\left(x-y\right)^2-1\right\}+c  

7.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

 If (1x1+x)12 dxx=2 cos1xϕ(x)+cIf\ \int_{ }^{ }\left(\frac{1-\sqrt{x}}{1+\sqrt{x}}\right)^{\frac{1}{2}}\ \frac{dx}{x}=2\ \cos^{-1}\sqrt{x}-\phi\left(x\right)+c  , then  ϕ(x) equals\phi\left(x\right)\ equals  

 loge(11xx)\log_e\left(\frac{1-\sqrt{1-x}}{\sqrt{x}}\right)  

 12loge(1+1xx)\frac{1}{2}\log_e\left(\frac{1+\sqrt{1-x}}{\sqrt{x}}\right)  

 2loge(11xx)2\log_e\left(\frac{1-\sqrt{1-x}}{\sqrt{x}}\right)  

 2loge(1+1xx)2\log_e\left(\frac{1+\sqrt{1-x}}{\sqrt{x}}\right)  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?