Search Header Logo

CIRCLE 3

Authored by Swagata Biswas

Mathematics

11th Grade

Used 4+ times

CIRCLE 3
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

21 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

The angle between a pair of tangents drawn from a point P to the circle x2+y2+4x6y+9 sin2α+13cos2α=0 is 2α.x^2+y^2+4x-6y+9\ \sin^2\alpha+13\cos^2\alpha=0\ is\ 2\alpha. The equation of the locus of the point P is 

 x2+y2+4x6y+4=0x^2+y^2+4x-6y+4=0  

 x2+y2+4x6y9=0x^2+y^2+4x-6y-9=0  

 x2+y2+4x6y4=0x^2+y^2+4x-6y-4=0  

 x2+y2+4x6y+9=0x^2+y^2+4x-6y+9=0  

2.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Let L be a straight line through the origin and L2L_2  be the straight line x + y = 1. If the intercepts made by the circle  x2+y2x+3y=0 on L1 and L2x^2+y^2-x+3y=0\ on\ L_1\ and\ L_2  and equal, then which of the following equations can represent  L1?L_1?  


x + y = 0

x - y = 0

x + 7y = 0

x - 7y = 0

3.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

The radius of the circle, having centre at (2,1), whose one of the chord is a diameter of the circle x2+y22x6y+6=0x^2+y^2-2x-6y+6=0  


1

2

3

 3\sqrt{3}  

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

IF (-3, 2) lies on the circle  x2+y2+2gx+2fy+c=0,x^2+y^2+2gx+2fy+c=0,  which is concentric with the circle  x2+y2+6x+8y5=0,x^2+y^2+6x+8y-5=0,   the c is.

11

- 11

24

none of these

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

The circle x2+y26x10y+c=0x^2+y^2-6x-10y+c=0  does not intersect or touch either axis and the point (1, 4) is inside the circle. Then the range of possible values of c is given by:


c > 9

c > 25

c > 29

25 < c < 29

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

The length of the tangent drawn from any point on the circle x2+2y2+2gx + 2fy + p=0x^2+^2y^2+2gx\ +\ 2fy\ +\ p=0  to the circle  x2+y2+2gx + 2fy + q =0 is :x^2+y^2+2gx\ +\ 2fy\ +\ q\ =0\ is\ :  


 qp\sqrt{q-p}  

 pq\sqrt{p-q}  

 q+p\sqrt{q+p}  

none

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

The angle between the two tangents from the origin to the circle x72+(y+1)2=25 equalsx-7^2+\left(y+1\right)^2=25\ equals  


 π4\frac{\pi}{4}  

 π3\frac{\pi}{3}  

 π2\frac{\pi}{2}  

none

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?