E2S3C1

E2S3C1

12th Grade

5 Qs

quiz-placeholder

Similar activities

6.3 #2: Even-odd properties of trig functions

6.3 #2: Even-odd properties of trig functions

11th - 12th Grade

7 Qs

Trigonometric Functions

Trigonometric Functions

11th Grade - University

10 Qs

RACIONALIZACIÓN DESAFÍO N°2

RACIONALIZACIÓN DESAFÍO N°2

12th Grade

10 Qs

Finding Trig. Values of Any Angle

Finding Trig. Values of Any Angle

10th - 12th Grade

10 Qs

Trig - Sum and Difference

Trig - Sum and Difference

9th - 12th Grade

10 Qs

Evaluación Sumativa 10mo EGB

Evaluación Sumativa 10mo EGB

9th - 12th Grade

10 Qs

Basic Trig Ratios: Definitions

Basic Trig Ratios: Definitions

10th - 12th Grade

10 Qs

Latihan Limit Trigonometri

Latihan Limit Trigonometri

12th Grade

10 Qs

E2S3C1

E2S3C1

Assessment

Quiz

Mathematics

12th Grade

Hard

Created by

Jose muñoz

Used 17+ times

FREE Resource

5 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Al racionalizar el denominador de la expresión 13\frac{1}{\sqrt{3}} se obtiene:

 13\frac{1}{3}  

 1\sqrt{1}  

 33\frac{3}{\sqrt{3}}  

 33\frac{\sqrt{3}}{3}  

2.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Media Image

Al racionalizar el denominador de la expresión en la imagen se obtiene:

Media Image
Media Image
Media Image
Media Image

3.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Al racionalizar el denominador de la expresión 152\frac{1}{\sqrt{5}-\sqrt{2}} 

se obtiene:

 5 510\frac{\sqrt{5}}{\ 5-\sqrt{10}}  

 523\frac{\sqrt{5}-\sqrt{2}}{3}  

 5+23\frac{\sqrt{5}+\sqrt{2}}{3}  

 5+27\frac{\sqrt{5}+\sqrt{2}}{7}  

4.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Para racionalizar el denominador de la expresión 726+3\frac{\sqrt{7}-\sqrt{2}}{\sqrt{6}+\sqrt{3}} se debe amplificar por:

 6+3\sqrt{6}+\sqrt{3}  

 72\sqrt{7}-\sqrt{2}  

 7+2\sqrt{7}+\sqrt{2}  

 63\sqrt{6}-\sqrt{3}  

5.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Al racionalizar el numerador de 3253\frac{3\sqrt{2}-\sqrt{5}}{\sqrt{3}} 

se obtiene:

 6153\frac{\sqrt{6}-\sqrt{15}}{3}  

 615\sqrt{6}-\sqrt{15}  

 1336+15\frac{13}{3\sqrt{6}+\sqrt{15}}  

 13321\frac{13}{3\sqrt{21}}