TRIGONOMETRIA

TRIGONOMETRIA

12th Grade

10 Qs

quiz-placeholder

Similar activities

六年级数学 复习单元1-4

六年级数学 复习单元1-4

1st - 12th Grade

10 Qs

Números Complejos 1

Números Complejos 1

12th Grade

10 Qs

B4: Hình nón, hình trụ

B4: Hình nón, hình trụ

12th Grade

10 Qs

Ukuran Penyebaran Data

Ukuran Penyebaran Data

12th Grade

15 Qs

ULANGAN HARIAN SEMESTER 1 MATEMATIKA PEMINATAN X MIPA

ULANGAN HARIAN SEMESTER 1 MATEMATIKA PEMINATAN X MIPA

12th Grade

13 Qs

Limit Tak hingga 1

Limit Tak hingga 1

12th Grade - University

10 Qs

5.1 Inverse & Direct Variation

5.1 Inverse & Direct Variation

9th - 12th Grade

12 Qs

Statistika

Statistika

12th Grade

10 Qs

TRIGONOMETRIA

TRIGONOMETRIA

Assessment

Quiz

Mathematics

12th Grade

Practice Problem

Hard

Created by

Fátima Morais

Used 43+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Sabendo que

 sinα=45\sin\alpha=-\frac{4}{5}  e que  α3º Q\alpha\in3º\ Q  determine o valor exato de  cos(π4+α)\cos\left(\frac{\pi}{4}+\alpha\right)  .

 7210\frac{7\sqrt{2}}{10}  

 210\frac{\sqrt{2}}{10}  

 210-\frac{\sqrt{2}}{10}  

 25\frac{\sqrt{2}}{5}  

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Em R, as soluções da equação cos(2x)+cos(x)+1=0\cos\left(2x\right)+\cos\left(x\right)+1=0 são da forma

x=π2+kπ x=2π3+2kπ x=2π3+2kπ , kZx=\frac{\pi}{2}+k\pi\ \vee\ x=\frac{2\pi}{3}+2k\pi\ \vee\ x=-\frac{2\pi}{3}+2k\pi\ ,\ k\in Z

x=π2+kπ x=2π3+2kπ x=5π3+2kπ , kZx=\frac{\pi}{2}+k\pi\ \vee\ x=\frac{2\pi}{3}+2k\pi\ \vee\ x=\frac{5\pi}{3}+2k\pi\ ,\ k\in Z

3.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

A função definida por f(x)=14+3cos(x5π4)f\left(x\right)=-\frac{1}{4}+3\cos\left(-\frac{x}{5}-\frac{\pi}{4}\right)  tem período positivo mínimo 


 2π rad2\pi\ rad  

 4π rad4\pi\ rad  

 π4 rad\frac{\pi}{4}\ rad  

 10π rad10\pi\ rad  

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Qual é o contradomínio da função definida por  h(x)=22sin(2x)22h\left(x\right)=-\frac{\sqrt{2}}{2}\sin\left(2x\right)-\frac{\sqrt{2}}{2}  


 0,22\lceil0,\frac{\sqrt{2}}{2}\rceil  

 2,0\lceil-\sqrt{2},0\rceil  

 1,1\lceil-1,1\rceil  

 2,2\lceil-\sqrt{2},\sqrt{2}\rceil  

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Podemos afirmar que as funções definidas por  f(x)=xsin2(2x) f\left(x\right)=-\frac{x}{\sin^2\left(2x\right)}\   e   g(x)=1tan(2x)g\left(x\right)=\frac{1}{\tan\left(2x\right)}  são

ambas pares.

ambas ímpares.

 ff  é par e  gg  é ímpar.

 g g\   é par e  ff  é ímpar.

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Os gráficos das funções  f(x)=2cos(2x)f\left(x\right)=-2\cos\left(2x\right)  e  g(x)=2sin(x2)g\left(x\right)=-2\sin\left(\frac{x}{2}\right)  , no intervalo  0,2π\lceil0,2\pi\rceil  intersetam-se no ponto de coordenadas

 (π2,2)\left(\frac{\pi}{2},2\right)  

 (π,2)\left(\pi,-2\right)  

 (π,2)\left(\pi,2\right)  

 (π2,2)\left(\frac{\pi}{2},-2\right)  

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

O domínio da função definida por  h(x)=11cos(x2)h\left(x\right)=\frac{1}{1-\left|\cos\left(\frac{x}{2}\right)\right|}  é

 ZZ  

 RR  

 xR  x2kπ ,  kZx\in R\ \wedge\ x\ne2k\pi\ ,\ \ k\in Z  

 xR  x=2kπ , kZx\in R\ \wedge\ x=2k\pi\ ,\ k\in Z  

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

By signing up, you agree to our Terms of Service & Privacy Policy

Already have an account?