Limite de șiruri

Limite de șiruri

11th Grade

9 Qs

quiz-placeholder

Similar activities

04.15 kamila granice ciągu

04.15 kamila granice ciągu

10th - 12th Grade

14 Qs

Limit tak hingga

Limit tak hingga

11th Grade

10 Qs

Limits Practice!

Limits Practice!

11th - 12th Grade

12 Qs

Kalkulus

Kalkulus

11th - 12th Grade

10 Qs

limites

limites

11th Grade

13 Qs

LIMIT TAK HINGGA

LIMIT TAK HINGGA

10th - 12th Grade

12 Qs

Test șiruri de numere reale 3

Test șiruri de numere reale 3

11th Grade

10 Qs

31. infinite series - comparison tests

31. infinite series - comparison tests

11th Grade - University

10 Qs

Limite de șiruri

Limite de șiruri

Assessment

Quiz

Mathematics

11th Grade

Hard

Created by

Maria Laura Popa

Used 3+ times

FREE Resource

9 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

 limnn(n+1n) =\lim_{n\rightarrow\infty}\sqrt{n}\cdot\left(\sqrt{n+1}-\sqrt{n}\right)\ =  

 12\frac{1}{2}  

0

 \infty  

 -\infty  

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 limn cos nn =\lim_{n\rightarrow\infty}\ \frac{\cos\ n}{n\ }=  

 + +\ \infty  

1

0

 1-1  

3.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

 limn 1n+2n+3n+... +nn = \lim_{n\rightarrow\infty}\ \sqrt{1^n+2^n+3^n+...\ +n^n}\ =\   

1

 ++\infty  

0

Nu există

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt


 limn n+1n3+1+n+2n3+2+...+n+nn3+n=\lim_{n\rightarrow\infty}\ \frac{n+1}{\sqrt{n^3+1}}+\frac{n+2}{\sqrt{n^3+2}}+...+\frac{n+n}{\sqrt{n^3+n}}=  

 12\frac{1}{2}  

1

0

 ++\infty  

5.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

 limn 5nn!=\lim_{n\rightarrow\infty}\ \frac{5^n}{n!}=  

5

 ++\infty  

0

1

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 limn 3n32n1n3+2n+3=\lim_{n\rightarrow\infty}\ \frac{3\cdot n^3-2n-1}{-n^3+2\cdot n+3}=  

3

 ++\infty  

 -\infty  

 3-3  

7.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 limn ln(2n+3n)n=\lim_{n\rightarrow\infty}\ \frac{\ln\left(2^n+3^n\right)}{n}=  

1

ln 3

0

 ++\infty  

8.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

 limn(1122)(1132)...(11(n+1)2)=\lim_{n\rightarrow\infty}\left(1-\frac{1}{2^2}\right)\cdot\left(1-\frac{1}{3^2}\right)\cdot...\cdot\left(1-\frac{1}{\left(n+1\right)^2}\right)=  

 12\frac{1}{2}  

1

 ++\infty  

0

9.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

 limn  ln(en+1)ln(en2+1)=\lim_{n\rightarrow\infty\ }\ \frac{\ln\left(e^n+1\right)}{\ln\left(e^{n^2}+1\right)}=  

e

1

0

 e2e^2