LÍMITES Y FUNCIONES CONTINUAS

LÍMITES Y FUNCIONES CONTINUAS

11th Grade

10 Qs

quiz-placeholder

Similar activities

Limits Algebraically

Limits Algebraically

11th - 12th Grade

10 Qs

Limits from a graph and algebraic limits

Limits from a graph and algebraic limits

10th - 12th Grade

15 Qs

Limits Graphically Practice

Limits Graphically Practice

11th - 12th Grade

14 Qs

Límites laterales

Límites laterales

11th Grade

15 Qs

BASIC CALCULUS

BASIC CALCULUS

11th Grade

10 Qs

Límites de funciones algebraicas

Límites de funciones algebraicas

11th Grade

15 Qs

GIỚI HẠN CỦA HÀM SỐ (PHẦN 1)

GIỚI HẠN CỦA HÀM SỐ (PHẦN 1)

11th Grade

12 Qs

Toán 11 (T1-T2)

Toán 11 (T1-T2)

11th Grade

10 Qs

LÍMITES Y FUNCIONES CONTINUAS

LÍMITES Y FUNCIONES CONTINUAS

Assessment

Quiz

Mathematics

11th Grade

Hard

Created by

JULIAN VELÁSQUEZ

Used 10+ times

FREE Resource

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Media Image

¿Cuál es el valor de este límite?

4

-2

5

-4

2.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

¿Y este otro límite?

-2

0

±∞

1

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

5

1

9

-9

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

 limx+ f(x)\lim_{x\rightarrow+\infty}\ f\left(x\right)  

 ++\infty  

 00  

 -\infty  

 44  

No existe

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

 limx5 f(x)\lim_{x\rightarrow5}\ f\left(x\right)  

 2-2  

 00  

 -\infty  

 ++\infty  

No existe

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

¿Existe  limx2 f(x)\lim_{x\rightarrow2^{ }}\ f\left(x\right)  ?

Si, y es igual a 22  

No porque  limx2 f(x)limx2+ f(x)\lim_{x\rightarrow2^-}\ f\left(x\right)\ne\lim_{x\rightarrow2^+}\ f\left(x\right)  

Si, y es igual a  44  

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

¿Es continua en  x=1x=1  ?

Si, porque  limx1 f(x)=1=f(1)\lim_{x\rightarrow1}\ f\left(x\right)=-1=f\left(1\right)  

No, porque  ∌ f(1)\not\ni\ f\left(1\right)  

No, porque  limx1 f(x)f(1)\lim_{x\rightarrow1}\ f\left(x\right)\ne f\left(1\right)  

No, porque  ∌limx1 f(x)\not\ni\lim_{x\rightarrow1}\ f\left(x\right)  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?