Derivadas parciales Mating-1

Derivadas parciales Mating-1

University - Professional Development

10 Qs

quiz-placeholder

Similar activities

Derivadas

Derivadas

University

15 Qs

Funciones multivariables

Funciones multivariables

University

7 Qs

UNIT-3 Application of PDE

UNIT-3 Application of PDE

Professional Development

15 Qs

Funciones lineales

Funciones lineales

University

8 Qs

Area bajo la curva y entre curvas

Area bajo la curva y entre curvas

University

10 Qs

Increasing and Decreasing Functions

Increasing and Decreasing Functions

12th Grade - University

10 Qs

Partial Fraction 1

Partial Fraction 1

University

9 Qs

Introduction to Differential Equation

Introduction to Differential Equation

University

15 Qs

Derivadas parciales Mating-1

Derivadas parciales Mating-1

Assessment

Quiz

Mathematics

University - Professional Development

Easy

Created by

Juan Flores

Used 3+ times

FREE Resource

AI

Enhance your content

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 F(x,y)=x2y22xy2F(x,y)=x^2y^2−2xy^2  
Determine el valor de  Fx\frac{\partial F}{\partial x}  como  Fy\frac{\partial F}{\partial y}  en el punto  P(2,1)P\left(2,1\right)  


 Fx=2\frac{\partial F}{\partial x}=2   Fy=0\frac{\partial F}{\partial y}=0  

 \frac{\partial F}{\partial x}=2   Fy=2\frac{\partial F}{\partial y}=2  

 Fx=0\frac{\partial F}{\partial x}=0   \frac{\partial F}{\partial y}=0  

 Fx=0\frac{\partial F}{\partial x}=0   Fy=2\frac{\partial F}{\partial y}=2  

2.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 θ(r,s)=r2+s2+rs\theta(r,s)=\sqrt{r^2+s^2}+\frac{r}{s}  
Determine el valor de  θr\frac{\partial\theta}{\partial r}  como  θs\frac{\partial\theta}{\partial s}  en el punto  P(3,4)P\left(3,4\right)  

 θr=2720\frac{\partial\theta}{\partial r}=\frac{27}{20}   \frac{\partial\theta}{\partial s}=\frac{49}{80} 

 \frac{\partial\theta}{\partial r}=\frac{17}{20}   θs=3980\frac{\partial\theta}{\partial s}=\frac{39}{80} 

 θr=1720\frac{\partial\theta}{\partial r}=\frac{17}{20}   θs=4980\frac{\partial\theta}{\partial s}=\frac{49}{80} 

 θr=3120\frac{\partial\theta}{\partial r}=\frac{31}{20}   \frac{\partial\theta}{\partial s}=\frac{49}{80} 

3.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 F(x,y)=3x3y2x2y2+y3F\left(x,y\right)=3x^3y-2x^2y^2+y^3  
Determine el valor de  Fx\frac{\partial F}{\partial x}  como  Fy\frac{\partial F}{\partial y}  en el punto  P(1,2)P\left(1,-2\right)  

 Fx=34\frac{\partial F}{\partial x}=-34   Fy=23\frac{\partial F}{\partial y}=23 

 Fx=34\frac{\partial F}{\partial x}=34   Fy=23\frac{\partial F}{\partial y}=-23 

 Fx=34\frac{\partial F}{\partial x}=-34   Fy=23\frac{\partial F}{\partial y}=-23 

 Fx=34\frac{\partial F}{\partial x}=34   Fy=23\frac{\partial F}{\partial y}=23 

4.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 F(x,y)=ln(1+2x2+3y2)F\left(x,y\right)=\ln(1+2x^2+3y^2)  
Determine el valor de  Fx\frac{\partial F}{\partial x}  como  Fy\frac{\partial F}{\partial y}  en el punto  P(1,2)P\left(1,2\right)  

 Fx=415\frac{\partial F}{\partial x}=-\frac{4}{15}   Fy=45\frac{\partial F}{\partial y}=-\frac{4}{5} 

 Fx=415\frac{\partial F}{\partial x}=\frac{4}{15}   Fy=45\frac{\partial F}{\partial y}=-\frac{4}{5} 

 Fx=415\frac{\partial F}{\partial x}=\frac{4}{15}   Fy=45\frac{\partial F}{\partial y}=\frac{4}{5} 

 Fx=45\frac{\partial F}{\partial x}=\frac{4}{5}   Fy=415\frac{\partial F}{\partial y}=\frac{4}{15} 

5.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Sea la función

 F(x,y)=ex(2y2x2)F\left(x,y\right)=e^{-x}(2y^2−x^2)  
Determine el valor de  Fx\frac{\partial F}{\partial x}  como  Fy\frac{\partial F}{\partial y}  en el punto  P(1,2)P\left(1,2\right)  

 Fx=1.019978389\frac{\partial F}{\partial x}=1.019978389   Fy=1.839397205\frac{\partial F}{\partial y}=-1.839397205 

 Fx=1.839397205\frac{\partial F}{\partial x}=1.839397205   Fy=1.019978389\frac{\partial F}{\partial y}=1.019978389 

 Fx=1.839397205\frac{\partial F}{\partial x}=-1.839397205   Fy=1.019978389\frac{\partial F}{\partial y}=1.019978389 

 Fx=1.019978389\frac{\partial F}{\partial x}=1.019978389   Fy=1.839397205\frac{\partial F}{\partial y}=1.839397205 

6.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Media Image

Dada la función z = f(x,y) en forma implícita, hallar ∂z/∂y.

Media Image
Media Image
Media Image
Media Image

Es otra expresión.

7.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Obtener

 Fx\frac{\partial F}{\partial x}  de la función  F=(z2+1)xF=\left(z^2+1\right)^x  

 (z2+1)xln(z2+1)\left(z^2+1\right)^x\ln\left(z^2+1\right)  

 (z2+1)xln(z2+1)x\left(z^2+1\right)^x\ln\left(z^2+1\right)x  

 (z2+1)xln(x)\left(z^2+1\right)^x\ln\left(x\right)  

 x(z2+1)x1(2z)x\left(z^2+1\right)^{x-1}\left(2z\right)  

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

By signing up, you agree to our Terms of Service & Privacy Policy

Already have an account?