Hyperbolic Trig Identities

Hyperbolic Trig Identities

12th Grade - University

13 Qs

quiz-placeholder

Similar activities

Unit INT Review

Unit INT Review

12th Grade - University

8 Qs

Mathematics Formula Quiz

Mathematics Formula Quiz

University

10 Qs

CheckPoint Primer Corte

CheckPoint Primer Corte

University - Professional Development

13 Qs

Quiz 1 Review

Quiz 1 Review

12th Grade

13 Qs

Quizziz Test Laplace and ILT

Quizziz Test Laplace and ILT

University

10 Qs

Finding Derivative of hyperbolic functions

Finding Derivative of hyperbolic functions

12th Grade

10 Qs

Math 1740 Derivatives and Integrals Q1

Math 1740 Derivatives and Integrals Q1

University

8 Qs

EVALUACIÓN PARCIAL 1 A

EVALUACIÓN PARCIAL 1 A

University

10 Qs

Hyperbolic Trig Identities

Hyperbolic Trig Identities

Assessment

Quiz

Mathematics

12th Grade - University

Hard

Created by

Jamie March

Used 16+ times

FREE Resource

13 questions

Show all answers

1.

MULTIPLE SELECT QUESTION

1 min • 1 pt

What is the hyperbolic identity for the trig identity:

 sin2x+cos2x=1\sin^2x+\cos^2x=1  ?

 sinh2xcosh2x=1-\sinh^2x-\cosh^2x=1  

 sinh2x+cosh2x=1\sinh^2x+\cosh^2x=1  

 cosh2xsinh2x=1\cosh^2x-\sinh^2x=1  

 cosh2x1=sinh2x\cosh^2x-1=\sinh^2x  

2.

MULTIPLE SELECT QUESTION

1 min • 1 pt

State the hyperbolic trig identity for the trig identity:

 tanx=sinxcosx\tan x=\frac{\sin x}{\cos x}  

 tanhx=sinhxcoshx\tanh x=\frac{\sinh x}{\cosh x}  

 tanhx=sinhxcoshx-\tanh x=\frac{\sinh x}{\cosh x}  

 tanhx=sinhxcoshx\tanh x=\frac{-\sinh x}{\cosh x}  

 tanhx=sinhxcoshx-\tanh x=\frac{-\sinh x}{\cosh x}  

3.

MULTIPLE SELECT QUESTION

1 min • 1 pt

State the hyperbolic trig function for the trig function:

 secxcosx=sinxtanx\sec x-\cos x=\sin x\tan x  

 sechxcoshx=sinhx tanhx\operatorname{sech}x-\cosh x=\sinh x\ \tanh x  

 coshxsechx=sinhxtanhx\cosh x-\operatorname{sech}x=\sinh x\tanh x  

 coshx+sechx=sinhxtanhx\cosh x+\operatorname{sech}x=\sinh x\tanh x  

 sechxcoshx=sinhxtanhx\operatorname{sech}x-\cosh x=-\sinh x\tanh x  

4.

MULTIPLE SELECT QUESTION

1 min • 1 pt

State the hyperbolic trig function for:

 cos2x=2cos2x1\cos2x=2\cos^2x-1  

 cosh(2x)=2cos2(x)1\cosh\left(2x\right)=2\cos^2\left(x\right)-1  

 cosh(2x)=2cosh2x1\cosh\left(2x\right)=2\cosh^2x-1  

 cosh(2x)+1=2cosh2x\cosh\left(2x\right)+1=2\cosh^2x  

 cosh(2x)2cosh2x=1\cosh\left(2x\right)-2\cosh^2x=1  

5.

MULTIPLE SELECT QUESTION

1 min • 1 pt

What is the hyperbolic trig identity corresponding to:

 sin2(x2)=12(1cos(x))\sin^2\left(\frac{x}{2}\right)=\frac{1}{2}\left(1-\cos\left(x\right)\right)  

 sinh2(x2)=12(1cosh(x))\sinh^2\left(\frac{x}{2}\right)=\frac{1}{2}\left(1-\cosh\left(x\right)\right)  

 sinh2(x2)=12(cosh(x)1)\sinh^2\left(\frac{x}{2}\right)=\frac{1}{2}\left(\cosh\left(x\right)-1\right)  

 sinh2(x2)=12(1+cosh(x))\sinh^2\left(\frac{x}{2}\right)=\frac{1}{2}\left(1+\cosh\left(x\right)\right)  

 sinh2(x2)=12(1cos(x))\sinh^2\left(\frac{x}{2}\right)=\frac{1}{2}\left(1-\cos\left(x\right)\right)  

6.

MULTIPLE SELECT QUESTION

1 min • 1 pt

What is the hyperbolic trig identity for:

 cosec4xcot4x=cosec2x+cot2x\operatorname{cosec}^4x-\cot^4x=\operatorname{cosec}^2x+\cot^2x  

 cosech4x+coth4x=cosech2x+coth2x\operatorname{cosech}^4x+\coth^4x=\operatorname{cosech}^2x+\coth^2x  

 cosech4xcoth4x=cosech2x+coth2x\operatorname{cosech}^4x-\coth^4x=\operatorname{cosech}^2x+\coth^2x  

 cosech4xcoth4x=cosech2xcoth2x\operatorname{cosech}^4x-\coth^4x=-\operatorname{cosech}^2x-\coth^2x  

 cosech4xcoth4x=sech2xcoth2x\operatorname{cosech}^4x-\coth^4x=\operatorname{sech}^2x-\coth^2x  

7.

MULTIPLE SELECT QUESTION

1 min • 1 pt

State the hyperbolic trig equation for:

 sin(3θ)=3sin(θ)4sin3(θ)\sin\left(3\theta\right)=3\sin\left(\theta\right)-4\sin^3\left(\theta\right)  

 sinh(3θ)=3sinh(θ)4sinh3(θ)\sinh\left(3\theta\right)=3\sinh\left(\theta\right)-4\sinh^3\left(\theta\right)  

 sinh(3θ)=4sinh3(θ)3sinh(θ)\sinh\left(3\theta\right)=4\sinh^3\left(\theta\right)-3\sinh\left(\theta\right)  

 sinh(3θ)=4sinh3(θ)3sinh(θ)\sinh\left(3\theta\right)=-4\sinh^3\left(\theta\right)-3\sinh\left(\theta\right)  

 sinh(3θ)=3sinh(θ)+4sinh3(θ)\sinh\left(3\theta\right)=3\sinh\left(\theta\right)+4\sinh^3\left(\theta\right)  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?