Vector Algebra

Vector Algebra

12th Grade

10 Qs

quiz-placeholder

Similar activities

分数的约分

分数的约分

1st - 12th Grade

12 Qs

Solving Equations Review - Mixed!

Solving Equations Review - Mixed!

7th - 12th Grade

15 Qs

EAES SIMULADOR 3

EAES SIMULADOR 3

12th Grade

10 Qs

INTRODUCCIÓN A LAS MATRICES

INTRODUCCIÓN A LAS MATRICES

12th Grade

10 Qs

Quiz Integral

Quiz Integral

12th Grade

10 Qs

PTS session 1

PTS session 1

11th Grade - University

10 Qs

คณิตศาสตร์ ป.6

คณิตศาสตร์ ป.6

1st Grade - University

10 Qs

المستطيل - رياضيات 2

المستطيل - رياضيات 2

3rd - 12th Grade

15 Qs

Vector Algebra

Vector Algebra

Assessment

Quiz

Mathematics

12th Grade

Practice Problem

Hard

Created by

Anitha T

Used 100+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

If

 a,b,c\overrightarrow{a}\overrightarrow{,b,}\overrightarrow{c}  are three unit vectors such that  a\overrightarrow{a}    is perpendicular to  b\overrightarrow{b}   , and is parallel to  c\overrightarrow{c}   then  a(b×c)\overrightarrow{a}\left(\overrightarrow{b}\times\overrightarrow{c}\right)   is equal to

 a\overrightarrow{a}  

 b\overrightarrow{b}  

 c\overrightarrow{c}  

 0\overrightarrow{0}  

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 [a,b,c]=1 \left[\overrightarrow{a}\overrightarrow{,b}\overrightarrow{,c}\right]=1\   then the value of   a(b×c)(c×a)b +b(c×a)(a×b)c+c(a×b)(c×b)a\ \frac{\overrightarrow{a}\cdot\left(\overrightarrow{b}\times\overrightarrow{c}\right)}{\left(\overrightarrow{c}\times\overrightarrow{a}\right)\cdot\overrightarrow{b}}\ +\frac{\overrightarrow{b}\cdot\left(\overrightarrow{c}\times\overrightarrow{a}\right)}{\left(\overrightarrow{a}\times\overrightarrow{b}\right)\cdot\overrightarrow{c}}+\frac{\overrightarrow{c}\cdot\left(\overrightarrow{a}\times\overrightarrow{b}\right)}{\left(\overrightarrow{c}\times\overrightarrow{b}\right)\cdot\overrightarrow{a}}  


-1

2

1

3

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

If   a and b \ \overrightarrow{a}\ and\ \overrightarrow{b}\  are the unit vectors such that    [a,b, a×b]=π4, \left[\overrightarrow{a},\overrightarrow{b},\ \overrightarrow{a}\times\overrightarrow{b}\right]=\frac{\pi}{4},\   then the angle between    a and b \ \overrightarrow{a}\ and\ \overrightarrow{b}\   is 

 π4\frac{\pi}{4}  

 π3\frac{\pi}{3}  

 π6\frac{\pi}{6}  

 π2\frac{\pi}{2}  

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 Consider the vectors  a,b,c,d\ \overrightarrow{a},\overrightarrow{b},\overrightarrow{c},\overrightarrow{d} such that    (a×b)×(c×d)=0.\ \left(\overrightarrow{a}\times\overrightarrow{b}\right)\times\left(\overrightarrow{c}\times\overrightarrow{d}\right)=\overrightarrow{0}.  Let  P1P_1   and  P2P_2   be the planes determined  by the pairs of vectors a,b and c,d \overrightarrow{a},\overrightarrow{b}\ and\ \overrightarrow{c},\overrightarrow{d}\   respectively .Then the angle between P1 and P2 is P_1\ and\ P_2\ is\    



 60°60\degree  

 0°0\degree  

 90°90\degree  

 45°45\degree  

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

If   a×(b×c)=(a×b)×c,\ \overrightarrow{a}\times\left(\overrightarrow{b}\times\overrightarrow{c}\right)=\left(\overrightarrow{a}\times\overrightarrow{b}\right)\times\overrightarrow{c},    where a,b,c \ where\ \overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\  are any three vectors such that  bc0 and ab0, then a and b  are \overrightarrow{b}\cdot\overrightarrow{c}\ne0\ and\ \overrightarrow{a}\cdot\overrightarrow{b}\ne0,\ then\ \overrightarrow{a}\ and\ \overrightarrow{b\ }\ are\   



 inclined at an angle π3inclined\ at\ an\ angle\ \frac{\pi}{3}  

 parallelparallel  

 inclined at an angle π6inclined\ at\ an\ angle\ \frac{\pi}{6}  

 perpendicular perpendicular\   

6.

FILL IN THE BLANK QUESTION

30 sec • 1 pt

If   a, b,c \ \overrightarrow{a},\ \overrightarrow{b},\overrightarrow{c}\   are non - coplanar ,non-zero vectors such that   [a,b,c]=3 then {[a×b, b×c,c×a]}2 \ \left[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\right]=3\ then\ \left\{\left[\overrightarrow{a}\times\overrightarrow{b},\ \overrightarrow{b}\times\overrightarrow{c},\overrightarrow{c}\times\overrightarrow{a}\right]\right\}^2\   is equal to 

7.

FILL IN THE BLANK QUESTION

45 sec • 1 pt

If the volume of the parallelpiped with    (a×b)×(b×c),(b×c)×(c×a) and \ \left(\overrightarrow{a}\times\overrightarrow{b}\right)\times\left(\overrightarrow{b}\times\overrightarrow{c}\right),\left(\overrightarrow{b}\times\overrightarrow{c}\right)\times\left(\overrightarrow{c}\times\overrightarrow{a}\right)\ and\     (c×a)×(a×b)\ \left(\overrightarrow{c}\times\overrightarrow{a}\right)\times\left(\overrightarrow{a}\times\overrightarrow{b}\right)  as conterminous edges is ,



Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

By signing up, you agree to our Terms of Service & Privacy Policy

Already have an account?