Fourier series and statistics

Fourier series and statistics

University

20 Qs

quiz-placeholder

Similar activities

تدريب فصل ثالث

تدريب فصل ثالث

12th Grade - University

18 Qs

Integration with Substitution and the Definite Integral

Integration with Substitution and the Definite Integral

University

21 Qs

Kalkulus Lanjut (mid term)

Kalkulus Lanjut (mid term)

University

20 Qs

U-substitution

U-substitution

10th Grade - University

15 Qs

Properties of Fourier Transform

Properties of Fourier Transform

University

21 Qs

Quiz on module-03

Quiz on module-03

University

15 Qs

Inverse Trig Functions

Inverse Trig Functions

9th Grade - University

20 Qs

Tugas 3 Matematika Analisis Kimia Kelas B

Tugas 3 Matematika Analisis Kimia Kelas B

University

15 Qs

Fourier series and statistics

Fourier series and statistics

Assessment

Quiz

Mathematics

University

Hard

CCSS
HSF.BF.B.3, HSF.TF.A.2, HSF.TF.A.4

Standards-aligned

Created by

smaheswari MATHEMATICS-HICET

Used 43+ times

FREE Resource

20 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

The value of sin nπn\pi  is

1

0

-1

n

2.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

The value of cos nπ=n\pi=  ------ and  Cos 0=-------

0 and 0

 (1)n\left(-1\right)^n   and 0

 (1)n\left(-1\right)^n  and 1

1 and 1

3.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

The value of  cos5x dx\int_{ }^{ }\cos5x\ dx  =

5 sin5x

-5sin5x

 sin5x5\frac{\sin5x}{5}  

 sin5x5-\frac{\sin5x}{5}  

4.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

The value of 0π sin3x dx\int_0^{\pi}\ \sin3x\ dx  

 23\frac{2}{3}  

 23-\frac{2}{3}  

0

 13\frac{1}{3}  

5.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

 ddx(x2) =\frac{\text{d}}{\text{d}x}\left(x^2\right)\ =  

x

2

2x

0

6.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

 ddx(k)=\frac{\text{d}}{\text{d}x}\left(k\right)=  -------where k is constant

1

k

0

x

7.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

 02π  x sinx dx\int_0^{2\pi}\ \ x\ \sin x\ dx  =

 x(cosx)(sinx)\left|x\left(-\cos x\right)-\left(-\sin x\right)\right|  

 x(cosx)(sinx)\left|x\left(\cos x\right)-\left(\sin x\right)\right|  

 x(cosx)(sinx)02π = 0\left|x\left(-\cos x\right)-\left(-\sin x\right)\right|_0^{2\pi}\ =\ 0  

 x(cosx)(sinx)02π = 2π\left|x\left(-\cos x\right)-\left(-\sin x\right)\right|_0^{2\pi}\ =\ -2\pi  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?