Transformada de laplace

Transformada de laplace

University

7 Qs

quiz-placeholder

Similar activities

Partial Differential  Equations

Partial Differential Equations

University

10 Qs

Math 123 Class #5

Math 123 Class #5

University

9 Qs

Chapter 9 Differentation

Chapter 9 Differentation

University

10 Qs

Modelos lineales Parte 1

Modelos lineales Parte 1

University

10 Qs

Regalas básicas de derivación

Regalas básicas de derivación

University

10 Qs

Pretest Teknik Diferensial

Pretest Teknik Diferensial

University

10 Qs

Testing Series for Convergence/Divergence

Testing Series for Convergence/Divergence

11th Grade - University

10 Qs

Ejercicios Clase: Segundo Teorema de Traslación

Ejercicios Clase: Segundo Teorema de Traslación

12th Grade - University

10 Qs

Transformada de laplace

Transformada de laplace

Assessment

Quiz

Mathematics

University

Medium

Created by

Walter Gaviria

Used 38+ times

FREE Resource

7 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

La transformada de laplace de la función

 f(t)=t2+4t5f\left(t\right)=t^2+4t-5  ,es

 F(s)=2s3+4s25sF\left(s\right)=\frac{2}{s^3}+\frac{4}{s^2}-\frac{5}{s}  

 F(s)=2s4+4s35s2F\left(s\right)=\frac{2}{s^4}+\frac{4}{s^3}-\frac{5}{s^2}  

 F(s)=1s3+1s25sF\left(s\right)=\frac{1}{s^3}+\frac{1}{s^2}-\frac{5}{s}  

 F(s)=2s34s2+5sF\left(s\right)=-\frac{2}{s^3}-\frac{4}{s^2}+\frac{5}{s}  

2.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

La transformada de laplace la la función

 f(t)=e2t+4e3tf\left(t\right)=e^{-2t}+4e^{-3t}  ,es:

 F(s)=1s+2+4s+3F\left(s\right)=\frac{1}{s+2}+\frac{4}{s+3}  , con s>-2

 F(s)=1s+2+4s+3F\left(s\right)=\frac{1}{s+2}+\frac{4}{s+3}  ,con s>-3

 F(s)=1s2+4s3F\left(s\right)=\frac{1}{s-2}+\frac{4}{s-3}  ,con s<2

 F(s)=1s2+4s3F\left(s\right)=\frac{1}{s-2}+\frac{4}{s-3}  ,con s<3

3.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

calcular

 L1{3s2}:L^{-1}\left\{\frac{3}{s^2}\right\}:  

 f(t)=3tf\left(t\right)=3t  

 f(t)=3tf\left(t\right)=-3t  

 f(t)=6tf\left(t\right)=6t  

 f(t)=6tf\left(t\right)=-6t  

4.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt


 L1{1(s21)(s2+3)}L^{-1}\left\{\frac{1}{\left(s^2-1\right)\left(s^2+3\right)}\right\}  es igual a la funcion : 

 f(t)=18et+18et312sen(3t)f\left(t\right)=-\frac{1}{8}e^{-t}+\frac{1}{8}e^t-\frac{\sqrt{3}}{12}sen\left(\sqrt{3}t\right)  

 f(t)=18et+18et+312sen(3t)f\left(t\right)=-\frac{1}{8}e^{-t}+\frac{1}{8}e^t+\frac{\sqrt{3}}{12}sen\left(\sqrt{3}t\right)  

 f(t)=18et+18et+14cos(3t)f\left(t\right)=-\frac{1}{8}e^t+\frac{1}{8}e^t+\frac{1}{4}\cos\left(\sqrt{3}t\right)  

5.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

La transformada inversa de la función

 F(s)=10s325s2F\left(s\right)=\frac{10s-3}{25-s^2}  ,es:


 f(t)=4710e5t5310e5tf\left(t\right)=-\frac{47}{10}e^{5t}-\frac{53}{10}e^{-5t}  

 f(t)=4710e5t5310e5tf\left(t\right)=-\frac{47}{10}e^{-5t}-\frac{53}{10}e^{5t}  

 f(t)=4710e5t+5310e5tf\left(t\right)=\frac{47}{10}e^{5t}+\frac{53}{10}e^{-5t}  

 f(t)=1047e5t+1053e5tf\left(t\right)=\frac{10}{47}e^{5t}+\frac{10}{53}e^{-5t}  

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt


 L1{s+1s2+1}L^{-1}\left\{\frac{s+1}{s^2+1}\right\}  

 f(t)=sen(t)cos(t)f\left(t\right)=sen\left(t\right)-\cos\left(t\right)  

 f(t)=sen(t)+cos(t)f\left(t\right)=sen\left(t\right)+\cos\left(t\right)  

 f(t)=sen(t)cos(t)f\left(t\right)=-sen\left(t\right)-\cos\left(t\right)  

 f(t)=sen(t)cos(t)f\left(t\right)=sen\left(t\right)\cos\left(t\right)  

7.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Tener en cuenta que

 L1{(sα)(sα)2+β2}=eαtcos(βt)L^{-1}\left\{\frac{\left(s-\alpha\right)}{\left(s-\alpha\right)^2+\beta^2}\right\}=e^{\alpha t}\cos\left(\beta t\right)  , luego  L1{ss2+2s+3} L^{-1}\left\{\frac{s}{s^2+2s+3}\right\}\   es igual a : 

 f(t)=cos(2t)sen(2t)f\left(t\right)=\cos\left(\sqrt{2}t\right)-sen\left(\sqrt{2}t\right)  

 f(t)=etcos(2t)12sen(2t)f\left(t\right)=e^t\cos\left(\sqrt{2}t\right)-\frac{1}{\sqrt{2}}sen\left(\sqrt{2}t\right)  

 f(t)=etcos(2t)12sen(2t)f\left(t\right)=e^{-t}\cos\left(\sqrt{2}t\right)-\frac{1}{\sqrt{2}}sen\left(\sqrt{2}t\right)  

 f(t)=cos(2t)sen(2t)2f\left(t\right)=\cos\left(2t\right)-\frac{sen\left(2t\right)}{2}