Search Header Logo

Integration-By Substitution Method

Authored by S.K. Batra

Mathematics

12th Grade

CCSS covered

Used 17+ times

Integration-By Substitution Method
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

15 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

 cotx.logsinxdx=\int\cot x.\log\sin xdx=  

 (logcotx)2+c\left(\log\cot x\right)^2+c  

 (logsinx)2\left(\log\sin x\right)^2  

 (logcosx)2\left(\log\cos x\right)^2  

None of these

2.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

 x.cosx2dx=\int x.\cos x^2dx=  

 x2.sinx3 +cx^2.\sin x^3\ +c  

 sinx22+c\frac{\sin x^2}{2}+c  

 cosx22+c\frac{\cos x^2}{2}+c  

none of these

3.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Integrate this followings by using Substitution Method
 8x(4x2+5)9dx\int8x\left(4x^2+5\right)^9dx  

 (4x2+5)1010 +c\frac{\left(4x^2+5\right)^{10}}{10}\ +c  

 (4x2+5)88 +c\frac{\left(4x^2+5\right)^8}{8}\ +c  

 (8x+5)1010 +c\frac{\left(8x+5\right)^{10}}{10}\ +c  

 (8x+5)88 +c\frac{\left(8x+5\right)^8}{8}\ +c  

4.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Integrate  \int\frac{2x}{\sqrt{3+x^2}}dx  using substitution methods

 12(3+x2)12+c\frac{1}{2\left(3+x^2\right)^{\frac{1}{2}}}+c  

 (3+2x)12+c\left(3+2x\right)^{\frac{1}{2}}+c  

 2(3+x2)12+c2\left(3+x^2\right)^{\frac{1}{2}}+c  

 2(3+x2)12+c2\left(3+x^2\right)^{-\frac{1}{2}}+c  

5.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Integrate  7x6(x7+1)8dx\int7x^6\left(x^7+1\right)^8dx  

 (x71)99+c\frac{\left(x^7-1\right)^9}{9}+c  

 (x7+1)99+c\frac{\left(x^7+1\right)^9}{9}+c  

 (x7+1)88+c\frac{\left(x^7+1\right)^8}{8}+c  

 (7x6+1)99+c\frac{\left(7x^6+1\right)^9}{9}+c  

6.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

 2x+1x2+x+1dx\int_{ }\frac{2x+1}{x^2+x+1}dx  by using method of substitution.

 lnu\ln\left|u\right|  

 lnu+c\ln\left|u\right|+c  

 lnx2+x+1+c\ln\left|x^2+x+1\right|+c  

 lnx2+x+1\ln\left|x^2+x+1\right|  

Tags

CCSS.HSA.APR.D.6

7.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Choose correct 'u' to solve the following integral by using substitution method:
 2xex2dx\int2xe^{x^2}dx  

Let  u=xu=x  

Let  u=x2u=x^2  

Let  u=ex2u=e^{x^2}  

Let  u=2xu=2x  

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?