31. infinite series - comparison tests

31. infinite series - comparison tests

11th Grade - University

10 Qs

quiz-placeholder

Similar activities

LIMIT TAK HINGGA

LIMIT TAK HINGGA

12th Grade

10 Qs

Basic Taylor Series

Basic Taylor Series

11th - 12th Grade

12 Qs

Testing Series for Convergence/Divergence

Testing Series for Convergence/Divergence

11th Grade - University

10 Qs

Integrals in Summation Notation

Integrals in Summation Notation

11th Grade - University

13 Qs

Divergence and Integral Tests

Divergence and Integral Tests

12th Grade

10 Qs

Sequences and Series Test

Sequences and Series Test

12th Grade

10 Qs

Chuỗi số dương

Chuỗi số dương

University

10 Qs

Very early Topic 10.9

Very early Topic 10.9

11th - 12th Grade

7 Qs

31. infinite series - comparison tests

31. infinite series - comparison tests

Assessment

Quiz

Mathematics

11th Grade - University

Medium

Created by

Devra Ramsey

Used 63+ times

FREE Resource

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

the convergence or divergence of n=1 2n24\sum_{n=1}^{\infty}\ \frac{2}{n^2-4} can be determined by  

Direct Comparison to  n=1 2n2\sum_{n=1}^{\infty}\ \frac{2}{n^2}  

Limit Comparison to n=1 1n+2\sum_{n=1}^{\infty}\ \frac{1}{n+2}  

Limit Comparison to  n=1 2n2\sum_{n=1}^{\infty}\ \frac{2}{n^2}  

Direct Comparison to the Harmonic Series

2.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

 n=1 1n(n+1)\sum_{n=1}^{\infty}\ \frac{1}{n\left(n+1\right)}  

diverges by Direct Comparison to the Harmonic Series 

converges by Direct Comparison to  n=1 1n\sum_{n=1}^{\infty}\ \frac{1}{n}  

converges by Direct Comparison to  n=1 1n2\sum_{n=1}^{\infty}\ \frac{1}{n^2} 

diverges by Limit Comparison to  n=1 1n2\sum_{n=1}^{\infty}\ \frac{1}{n^2} 

3.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

 n=1 12n1\sum_{n=1}^{\infty}\ \frac{1}{2n-1}  diverges by

Direct Comparison to the Harmonic Series

it is the Harmonic Series

Limit Comparison to  n=1 1n2\sum_{n=1}^{\infty}\ \frac{1}{n^2}  yields  \infty  

Direct Comparison to a Geometric Series where  r=2\left|r\right|=2  

4.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

convergence or divergence for  n=1 3n+52n1\sum_{n=1}^{\infty}\ \frac{3^n+5}{2^n-1}  can be determined by 

Limit Comparison to  n=1(32)n\sum_{n=1}^{\infty}\left(\frac{3}{2}\right)^n  

Direct Comparison to  n=1 12n\sum_{n=1}^{\infty}\ \frac{1}{2^n}  

GST since  r=5\left|r\right|=5  

p-series test since  p=32p=\frac{3}{2}  

5.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

 n=1 n2+1n42n2+1\sum_{n=1}^{\infty}\ \frac{n^2+1}{n^4-2n^2+1}  converges because

 limn n2+1n42n2+1=0\lim_{n\rightarrow\infty}\ \frac{n^2+1}{n^4-2n^2+1}=0  

 limn n4+n2n42n2+1=1\lim_{n\rightarrow\infty}\ \frac{n^4+n^2}{n^4-2n^2+1}=1  

 limn n2+1n42n2+1\lim_{n\rightarrow\infty}\ \frac{n^2+1}{n^4-2n^2+1}  is finite and positive

it's a p-series with  p=4p=4  

6.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

which test is right for determining the convergence or divergence of  \sum_{n=1}^{\infty}\ \frac{3}{n+4} 

Direct Comparison to  n=1 1n\sum_{n=1}^{\infty}\ \frac{1}{n}  

Direct Comparison to  n=1 1n2\sum_{n=1}^{\infty}\ \frac{1}{n^2}  

Limit Comparison to  \sum_{n=1}^{\infty}\ \frac{1}{n}  

GST where  r=34r=\frac{3}{4}  

7.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

the convergence of  n=1 25n+1\sum_{n=1}^{\infty}\ \frac{2}{5^n+1} can be proven with the comparison series:  

 n=1(15)n\sum_{n=1}^{\infty}\left(\frac{1}{5}\right)^n  

 n=1(25)n\sum_{n=1}^{\infty}\left(\frac{2}{5}\right)^n  

 n=1 5n\sum_{n=1}^{\infty}\ 5^n  

the Harmonic Series

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?