Second Order Linear Differential Equations

Second Order Linear Differential Equations

University

10 Qs

quiz-placeholder

Similar activities

Ordinary Differential Equations and Limits (G12)

Ordinary Differential Equations and Limits (G12)

12th Grade - University

6 Qs

Basic Differentiation

Basic Differentiation

University

15 Qs

Maxima and Minima

Maxima and Minima

12th Grade - University

10 Qs

Derivada de la función trigonométricas

Derivada de la función trigonométricas

12th Grade - University

12 Qs

Appendix MAT238 (Test your Knowledge)

Appendix MAT238 (Test your Knowledge)

University

10 Qs

DIFFERENTIATION

DIFFERENTIATION

University

10 Qs

Higher order linear differential equations

Higher order linear differential equations

University

14 Qs

DIFFERENTIAL EQUATIONS (MMR w3)

DIFFERENTIAL EQUATIONS (MMR w3)

12th Grade - University

11 Qs

Second Order Linear Differential Equations

Second Order Linear Differential Equations

Assessment

Quiz

Mathematics

University

Medium

Created by

MUNIRAH ARIFFIN

Used 180+ times

FREE Resource

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

What is the general solution to the DE d2xdy2+7dxdy8y=0\frac{\text{d}^2x}{\text{d}y^2}+7\frac{\text{d}x}{\text{d}y}-8y=0  ?

 y=Cex+De8xy=Ce^{-x}+De^{8x}  

 y=Cex+De8xy=Ce^x+De^{-8x}  

 y=Cex+De7xy=Ce^x+De^{7x}  

 y=Cex+De7xy=Ce^{-x}+De^{7x}  

2.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 d2xdy2+6dxdy5y=0 \frac{\text{d}^2x}{\text{d}y^2}+6\frac{\text{d}x}{\text{d}y}-5y=0\   

The general solution to the DE is,

 y=Aex+Be5xy=Ae^x+Be^{5x}  

 y=Aex+Be5xy=Ae^{-x}+Be^{-5x}  

 y=Ae(3+14)x+Be(314)xy=Ae^{\left(-3+\sqrt{14}\right)x}+Be^{\left(-3-\sqrt{14}\right)x}  

 y=Acos(3+14)x+Bsin(314)xy=A\cos\left(-3+\sqrt{14}\right)x+B\sin\left(-3-\sqrt{14}\right)x  

3.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

The roots of the auxiliary equation 
 dxdy+16y=0\frac{\text{d}x}{\text{d}y}+16y=0  is

 y=Acos16x+Bsin16xy=A\cos16x+B\sin16x  

 y=A+Be16xy=A+Be^{-16x}  

 y=Acos4x+Bsin4xy=A\cos4x+B\sin4x  

 y=Ae4x+Be4xy=Ae^{4x}+Be^{-4x}  

4.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

The general solution of the DE
 d2xdy2+4dxdy5y=0\frac{\text{d}^2x}{\text{d}y^2}+4\frac{\text{d}x}{\text{d}y}-5y=0  is

 y=Aex+Be5xy=Ae^x+Be^{-5x}  

 y=Aex+Be5xy=Ae^{-x}+Be^{5x}  

 y=Aex+Be5xy=Ae^x+Be^{5x}  

 y=Aex+Be5xy=Ae^{-x}+Be^{-5x}  

5.

MULTIPLE SELECT QUESTION

1 min • 1 pt

 d2xdy2+4dxdy6y=0\frac{\text{d}^2x}{\text{d}y^2}+4\frac{\text{d}x}{\text{d}y}-6y=0  

Which of the following options are TRUE about the above DE?

The roots of the auxiliary equations are two complex roots.

The auxiliary equation has two different roots.

The auxiliary equation has two equal roots.

The equation is homogeneous.

6.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

The initial guess for f(x)4cos3x+2x2f\left(x\right)-4\cos3x+2x^2  

 yp=(Ccos3x+Fx2)y_p=\left(C\cos3x+Fx^2\right)  

 yp=(Ccos3x+Dsin3x+Fx2+Gx+H)y_p=\left(C\cos3x+D\sin3x+Fx^2+Gx+H\right)  

 yp=(Ccos3x+Dsin3x+Fx2)y_p=\left(C\cos3x+D\sin3x+Fx^2\right)  

 yp=(Ccos3xDsin3x+Fx2+G)y_p=\left(C\cos3x-D\sin3x+Fx^2+G\right)  

7.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Given  d2xdy2+4dxdy+3y=2ex.\frac{\text{d}^2x}{\text{d}y^2}+4\frac{\text{d}x}{\text{d}y}+3y=2e^{-x}.  

The correct  ypy_p  is

 CexCe^{-x}  

 Ccosx+DsinxC\cos x+D\sin x  

 CexCe^x  

 CxexCxe^{-x}  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?