Derivadas de Funciones Trigonométricas Inversas

Derivadas de Funciones Trigonométricas Inversas

12th Grade - University

7 Qs

quiz-placeholder

Similar activities

Características de las cónicas

Características de las cónicas

10th Grade - University

10 Qs

partial derivatives -quiz

partial derivatives -quiz

University

12 Qs

7-8 Attributions and Transformations of Natural Logarithms

7-8 Attributions and Transformations of Natural Logarithms

9th - 12th Grade

10 Qs

Graphs of Polynomial Functions

Graphs of Polynomial Functions

8th - 12th Grade

10 Qs

Writing Exponential Equations

Writing Exponential Equations

9th - 12th Grade

10 Qs

القطع الزائد

القطع الزائد

12th Grade

11 Qs

Chain Rule & Higher Order Derivatives Review

Chain Rule & Higher Order Derivatives Review

11th Grade - University

12 Qs

3.7-3.8 Review

3.7-3.8 Review

10th - 12th Grade

12 Qs

Derivadas de Funciones Trigonométricas Inversas

Derivadas de Funciones Trigonométricas Inversas

Assessment

Quiz

Mathematics

12th Grade - University

Hard

Created by

CYNDI TRIGUEROS

Used 10+ times

FREE Resource

7 questions

Show all answers

1.

MULTIPLE SELECT QUESTION

5 mins • 1 pt

Determina la derivada de:  f(x)=arcsen(1x5)f\left(x\right)=arcsen\left(\frac{1}{x^5}\right)  

 y=5xx101y'=\frac{-5}{x\sqrt{x^{10}-1}}  

 y=5x1x10y'=\frac{-5}{x\sqrt{1-x^{10}}}  

 y=5xx101y'=\frac{-5x}{\sqrt{x^{10}-1}}  

 y=5x611x10y'=\frac{-5}{x^6\sqrt{1-\frac{1}{x^{10}}}}  

 y=5x1x10y'=\frac{-5x}{\sqrt{1-x^{10}}}  

2.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

 y=arccos(8e(5x))y=\arccos\left(8e^{\left(-5x\right)}\right)  calcula la derivada de

 y=8e(5x)164e(5x2)y'=\frac{8e^{\left(-5x\right)}}{\sqrt{1-64e^{\left(-5x^2\right)}}}  

 y=40e(5x)164e(10x)y'=\frac{40e^{\left(-5x\right)}}{\sqrt{1-64e^{\left(-10x\right)}}}  

 y=40e(5x)164e(5x2)y'=\frac{40e^{\left(-5x\right)}}{\sqrt{1-64e^{\left(-5x^2\right)}}}  

 y=40e(5x)164e(25x2)y'=\frac{-40e^{\left(-5x\right)}}{\sqrt{1-64e^{\left(25x^2\right)}}}  

3.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

 f(x)=arctan6(x4)f\left(x\right)=\arctan^6\left(x^{-4}\right)  

 y=24x5arctan5(x4)1+x8y'=\frac{-24x^{-5}\arctan^5\left(x^{-4}\right)}{1+x^8}  

 y=6x3arctan5(x4)x8+1y'=\frac{-6x^3\arctan^5\left(x^{-4}\right)}{x^8+1}  

 y=24x3arctan5(x4)x8+1y'=\frac{-24x^3\arctan^5\left(x^{-4}\right)}{x^8+1}  

 y=6x5arctan5(x4)x8+1y'=\frac{-6x^{-5}\arctan^5\left(x^{-4}\right)}{x^8+1}  

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

 y=arcsen(x24)y=arcsen\left(\sqrt{x^2-4}\right)  

 y=x5x2       x24y'=\frac{x}{\sqrt{5-x^2\ \ }\ \ \ \ \ \sqrt{x^2-4}}  

 y=2x3x2       x24y'=\frac{2x}{\sqrt{3-x^2\ \ }\ \ \ \ \ \sqrt{x^2-4}}  

 y=x3x2       x24y'=\frac{x}{\sqrt{3-x^2\ \ }\ \ \ \ \ \sqrt{x^2-4}}  

 y=2x5x2       x24y'=\frac{2x}{\sqrt{5-x^2\ \ }\ \ \ \ \ \sqrt{x^2-4}}  

 y=x5x2   y'=\frac{x}{\sqrt{5-x^2\ \ }\ }  

5.

MULTIPLE SELECT QUESTION

5 mins • 1 pt

 f(x)=arcsec(secx)f\left(x\right)=\operatorname{arcsec}\left(\sec x\right)  

 y=sec(x)tan(x)sec(x)sec2(x)1y'=\frac{\sec\left(x\right)\tan\left(x\right)}{\sec\left(x\right)\sqrt{\sec^2\left(x\right)-1}}  

 11  

 00  

 y=tan(x)sec2(x)1y'=\frac{\tan\left(x\right)}{\sqrt{\sec^2\left(x\right)-1}}  

6.

MULTIPLE SELECT QUESTION

5 mins • 1 pt

 y=arccot(7(x))y=\operatorname{arccot}\left(7^{\left(x\right)}\right)  

 y=7xln(7)1+7x2y'=\frac{-7^x\ln\left(7\right)}{1+7^{x^2}}  

 y=7xln(7)1+72xy'=\frac{-7^x\ln\left(7\right)}{1+7^{2x}}  

 y=7xln(7)(1+72x)y'=\frac{-7^x}{\ln\left(7\right)\left(1+7^{2x}\right)}  

 y=7xln(7)1+49xy'=\frac{-7^x\ln\left(7\right)}{1+49^x}  

 y=7xln(7)1+49x2y'=\frac{-7^x\ln\left(7\right)}{1+49^{x^2}}  

7.

MULTIPLE SELECT QUESTION

5 mins • 1 pt

 f(x)=arccsc(x32x+4)5f\left(x\right)=\operatorname{arccsc}\left(x^3-2x+4\right)^5  

 y=5((x32x+4)4)(x32x+4)5(x32x+4)101y'=\frac{-5\left(\left(x^3-2x+4\right)^4\right)}{\left(x^3-2x+4\right)^5\sqrt{\left(x^3-2x+4\right)^{10}-1}}  

 y=5(x32x+4)(x32x+4)101y'=\frac{-5}{\left(x^3-2x+4\right)^{ }\sqrt{\left(x^3-2x+4\right)^{10}-1}}  

 y=5(3x22)(x32x+4)(x32x+4)101y'=\frac{-5\left(3x^2-2\right)}{\left(x^3-2x+4\right)^{ }\sqrt{\left(x^3-2x+4\right)^{10}-1}}  

 y=5(3x22)((x32x+4)4)(x32x+4)5(x32x+4)101y'=\frac{-5\left(3x^2-2\right)\left(\left(x^3-2x+4\right)^4\right)}{\left(x^3-2x+4\right)^5\sqrt{\left(x^3-2x+4\right)^{10}-1}}