Jednadžba kružnice u kanonskom obliku

Jednadžba kružnice u kanonskom obliku

1st - 5th Grade

5 Qs

quiz-placeholder

Similar activities

Tiệm cận

Tiệm cận

1st - 2nd Grade

10 Qs

Factoriser

Factoriser

1st - 12th Grade

10 Qs

Kružnica

Kružnica

3rd Grade

10 Qs

Kružnice

Kružnice

3rd Grade - University

5 Qs

Jednadžba kružnice

Jednadžba kružnice

3rd - 4th Grade

5 Qs

Ulangan Harian TURUNAN FUNGSI TRIGONOMETRI

Ulangan Harian TURUNAN FUNGSI TRIGONOMETRI

1st Grade

10 Qs

SISTEMA DE DOS ECUACIONES CON DOS INCÓGNITAS

SISTEMA DE DOS ECUACIONES CON DOS INCÓGNITAS

4th Grade

10 Qs

สมบัติของเลขยกกำลัง เพิ่มเติม 2/64

สมบัติของเลขยกกำลัง เพิ่มเติม 2/64

3rd Grade

10 Qs

Jednadžba kružnice u kanonskom obliku

Jednadžba kružnice u kanonskom obliku

Assessment

Quiz

Mathematics

1st - 5th Grade

Easy

Created by

Goran Knez

Used 2K+ times

FREE Resource

5 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Jednadžba kružnice sa središtem u  S(p,q)S\left(p,q\right)   i polumjerom duljine  rr   je  (xp)2+(yq)2=r2\left(x-p\right)^2+\left(y-q\right)^2=r^2  .

TOČNO

NETOČNO

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Jednadžba kružnice sa središtem u  S(2,5)S\left(2,-5\right)   i polumjerom duljine  33   je  (x2)2+(y5)2=9\left(x-2\right)^2+\left(y-5\right)^2=9  .

TOČNO

NETOČNO

3.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

Jednadžba kružnice sa slike je:

 (x+2)2(y3)2=16\left(x+2\right)^2-\left(y-3\right)^2=16  

 (x2)2+(y3)2=16\left(x-2\right)^2+\left(y-3\right)^2=16  

 (x+2)2+(y3)2=16\left(x+2\right)^2+\left(y-3\right)^2=16  

 (x+2)2+(y3)2=4\left(x+2\right)^2+\left(y-3\right)^2=4  

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Središte kružnice zadane jednadžbom  (x5)2+(y+2)2=81\left(x-5\right)^2+\left(y+2\right)^2=81  je:

 S(5,2)S\left(5,2\right)  

 S(5,2)S\left(-5,2\right)  

 S(5,2)S\left(-5,-2\right)  

 S(5,2)S\left(5,-2\right)  

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Jednadžba kružnice koja je koncentrična kružnici (x+3)2+(y2)2=8\left(x+3\right)^2+\left(y-2\right)^2=8  i ima dvostruko manji opseg je  (x+3)2+(y2)2=4\left(x+3\right)^2+\left(y-2\right)^2=4 .

TOČNO

NETOČNO