Search Header Logo

Writing Integrals Using Sigma Notation

Authored by Huguette Williams

Mathematics

11th - 12th Grade

Used 6+ times

Writing Integrals Using Sigma Notation
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

6 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 25(x3+3)dx\int_2^5\left(x^3+3\right)dx  as limit of a sum is equivalent to

 limni=1n[(2+3in)3+3]1n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(2+\frac{3i}{n}\right)^3+3\right]\frac{1}{n}  

 limni=1n[(2+3in)3+3]3in\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(2+\frac{3i}{n}\right)^3+3\right]\frac{3i}{n}  

 limni=1n[(3in)3+3]3n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(\frac{3i}{n}\right)^3+3\right]\frac{3}{n}  

 limni=1n[(2+3in)3+3]3n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(2+\frac{3i}{n}\right)^3+3\right]\frac{3}{n}  

2.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 0πcosxdx \int_0^{\pi}\cos xdx\   as limit of a sum is equivalent to

 limni=1n[cos(πin)]in\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\cos\left(\frac{\pi i}{n}\right)\right]\frac{i}{n}  

 limni=1n[cos(in)]in\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\cos\left(\frac{i}{n}\right)\right]\frac{i}{n}  

 limni=1n[cos(πin)]πn\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\cos\left(\frac{\pi i}{n}\right)\right]\frac{\pi}{n}  

 limni=1n[cos(in)]πn\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\cos\left(\frac{i}{n}\right)\right]\frac{\pi}{n}  

3.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 limni=1n[(5in)2+5in+1]5n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(\frac{5i}{n}\right)^2+\frac{5i}{n}+1\right]\frac{5}{n}  in integral notation would be 

 05(x2+x+1)dx\int_0^5\left(x^2+x+1\right)dx  

 56(x2+x+1)dx\int_5^6\left(x^2+x+1\right)dx  

 01((5x)2+5x+1)dx\int_0^1\left(\left(5x\right)^2+5x+1\right)dx  

 010(x22+x2+1)dx\int_0^{10}\left(\frac{x^2}{2}+\frac{x}{2}+1\right)dx  

4.

MULTIPLE SELECT QUESTION

1 min • 1 pt

 limni=1n[2+3+4in]4n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[2+\sqrt{3+\frac{4i}{n}}\right]\frac{4}{n}  in integral notation would be 

 37(2+x)dx\int_3^7\left(2+\sqrt{x}\right)dx  

 04(2+x)dx\int_0^4\left(2+\sqrt{x}\right)dx  

 37(2x+x)dx\int_3^7\left(2x+\sqrt{x}\right)dx  

 37(2+3+x)dx\int_3^7\left(2+\sqrt{3+x}\right)dx  

5.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Write the limit as a definite integral.
    limn π2nk=1nsec(kπ2n)\lim_{n\rightarrow\infty}\ \frac{\frac{\pi}{2}}{n}\sum_{k=1}^n\sec\left(k\cdot\frac{\pi}{2n}\right)  

 0π2sec(x)dx\int_0^{\frac{\pi}{2}}\sec\left(x\right)dx  

 01sec(x)dx\int_0^1\sec\left(x\right)dx  

 0π2sec(1x)dx\int_0^{\frac{\pi}{2}}\sec\left(\frac{1}{x}\right)dx  

 0π2sec(πx)dx\int_0^{\frac{\pi}{2}}\sec\left(\pi x\right)dx  

6.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 limn 1nk=1n1kn\lim_{n\rightarrow\infty}\ \frac{1}{n}\sum_{k=1}^n\frac{1}{\sqrt{\frac{k}{n}}}  Which answer choice is the definite integral for this limit?

 011xdx\int_0^1\sqrt{\frac{1}{x}}dx  

 01xdx\int_0^1\sqrt{x}dx  

 0x 1xdx\int_0^{\sqrt{x}}\ \frac{1}{x}dx  

 01 1xdx\int_0^1\ \frac{1}{\sqrt{x}}dx  

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?