Writing Integrals Using Sigma Notation

Writing Integrals Using Sigma Notation

11th - 12th Grade

6 Qs

quiz-placeholder

Similar activities

limit fungsi aljabar

limit fungsi aljabar

11th Grade

10 Qs

MAEC - DIAGNÓSTICO

MAEC - DIAGNÓSTICO

11th Grade

10 Qs

Avaliação - Análise Combinatória (valor 5,0)

Avaliação - Análise Combinatória (valor 5,0)

12th Grade

10 Qs

TES POTENSI AKADEMIK

TES POTENSI AKADEMIK

10th - 12th Grade

10 Qs

Ubahan Bergabung

Ubahan Bergabung

12th Grade

11 Qs

 Rational Function

Rational Function

11th Grade

10 Qs

PH 1 Bilangan Berpangkat Kelas 9 2021/2022

PH 1 Bilangan Berpangkat Kelas 9 2021/2022

1st - 12th Grade

10 Qs

Inecuaciones

Inecuaciones

11th Grade

10 Qs

Writing Integrals Using Sigma Notation

Writing Integrals Using Sigma Notation

Assessment

Quiz

Mathematics

11th - 12th Grade

Medium

Created by

Huguette Williams

Used 6+ times

FREE Resource

AI

Enhance your content

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

6 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 25(x3+3)dx\int_2^5\left(x^3+3\right)dx  as limit of a sum is equivalent to

 limni=1n[(2+3in)3+3]1n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(2+\frac{3i}{n}\right)^3+3\right]\frac{1}{n}  

 limni=1n[(2+3in)3+3]3in\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(2+\frac{3i}{n}\right)^3+3\right]\frac{3i}{n}  

 limni=1n[(3in)3+3]3n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(\frac{3i}{n}\right)^3+3\right]\frac{3}{n}  

 limni=1n[(2+3in)3+3]3n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(2+\frac{3i}{n}\right)^3+3\right]\frac{3}{n}  

2.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 0πcosxdx \int_0^{\pi}\cos xdx\   as limit of a sum is equivalent to

 limni=1n[cos(πin)]in\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\cos\left(\frac{\pi i}{n}\right)\right]\frac{i}{n}  

 limni=1n[cos(in)]in\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\cos\left(\frac{i}{n}\right)\right]\frac{i}{n}  

 limni=1n[cos(πin)]πn\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\cos\left(\frac{\pi i}{n}\right)\right]\frac{\pi}{n}  

 limni=1n[cos(in)]πn\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\cos\left(\frac{i}{n}\right)\right]\frac{\pi}{n}  

3.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 limni=1n[(5in)2+5in+1]5n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(\frac{5i}{n}\right)^2+\frac{5i}{n}+1\right]\frac{5}{n}  in integral notation would be 

 05(x2+x+1)dx\int_0^5\left(x^2+x+1\right)dx  

 56(x2+x+1)dx\int_5^6\left(x^2+x+1\right)dx  

 01((5x)2+5x+1)dx\int_0^1\left(\left(5x\right)^2+5x+1\right)dx  

 010(x22+x2+1)dx\int_0^{10}\left(\frac{x^2}{2}+\frac{x}{2}+1\right)dx  

4.

MULTIPLE SELECT QUESTION

1 min • 1 pt

 limni=1n[2+3+4in]4n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[2+\sqrt{3+\frac{4i}{n}}\right]\frac{4}{n}  in integral notation would be 

 37(2+x)dx\int_3^7\left(2+\sqrt{x}\right)dx  

 04(2+x)dx\int_0^4\left(2+\sqrt{x}\right)dx  

 37(2x+x)dx\int_3^7\left(2x+\sqrt{x}\right)dx  

 37(2+3+x)dx\int_3^7\left(2+\sqrt{3+x}\right)dx  

5.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Write the limit as a definite integral.
    limn π2nk=1nsec(kπ2n)\lim_{n\rightarrow\infty}\ \frac{\frac{\pi}{2}}{n}\sum_{k=1}^n\sec\left(k\cdot\frac{\pi}{2n}\right)  

 0π2sec(x)dx\int_0^{\frac{\pi}{2}}\sec\left(x\right)dx  

 01sec(x)dx\int_0^1\sec\left(x\right)dx  

 0π2sec(1x)dx\int_0^{\frac{\pi}{2}}\sec\left(\frac{1}{x}\right)dx  

 0π2sec(πx)dx\int_0^{\frac{\pi}{2}}\sec\left(\pi x\right)dx  

6.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 limn 1nk=1n1kn\lim_{n\rightarrow\infty}\ \frac{1}{n}\sum_{k=1}^n\frac{1}{\sqrt{\frac{k}{n}}}  Which answer choice is the definite integral for this limit?

 011xdx\int_0^1\sqrt{\frac{1}{x}}dx  

 01xdx\int_0^1\sqrt{x}dx  

 0x 1xdx\int_0^{\sqrt{x}}\ \frac{1}{x}dx  

 01 1xdx\int_0^1\ \frac{1}{\sqrt{x}}dx