Inverse of Exponential Functions

Inverse of Exponential Functions

11th Grade

5 Qs

quiz-placeholder

Similar activities

Log and Exponential Transformations

Log and Exponential Transformations

10th - 12th Grade

10 Qs

Rodiklinė ir logoritminė funkcija

Rodiklinė ir logoritminė funkcija

11th - 12th Grade

10 Qs

PreCalc - Launch - Week 9 Day 1 - Test Prep

PreCalc - Launch - Week 9 Day 1 - Test Prep

11th - 12th Grade

10 Qs

Exponential Graphs

Exponential Graphs

9th - 12th Grade

10 Qs

Transformations Assessment

Transformations Assessment

9th - 11th Grade

10 Qs

Summative#1 Review (1.1-1.4 - Abs Vert)

Summative#1 Review (1.1-1.4 - Abs Vert)

10th - 12th Grade

10 Qs

Writing Exponential Functions from a Graph and Table

Writing Exponential Functions from a Graph and Table

8th - 12th Grade

10 Qs

Attributes of Parent Functions

Attributes of Parent Functions

9th - 12th Grade

10 Qs

Inverse of Exponential Functions

Inverse of Exponential Functions

Assessment

Quiz

Mathematics

11th Grade

Medium

CCSS
HSF.BF.B.3

Standards-aligned

Created by

Raven Moore

Used 32+ times

FREE Resource

5 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Find the inverse of  f(x)=6xf\left(x\right)=6^x  .

 f(x)=logx6f'\left(x\right)=\log_x6  

 f(x)=log6xf'\left(x\right)=\log_6x  

 f(x)=log6xf'\left(x\right)=\log_{6x}  

 f(x)=log (6+x)f'\left(x\right)=\log\ \left(6+x\right)  

2.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

A logarithmic function is the inverse of an exponential function.

True

False

Tags

CCSS.HSF.BF.B.3

3.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

The inverse of an exponential function is its reflection across the x-axis.

True

False

4.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Find the inverse function of  f(x)=5xf\left(x\right)=5^x  

 f(x) = log5xf'\left(x\right)\ =\ \log_5x  

 f(x)=log5xf'\left(x\right)=\log_{5x}  

 f(x)=5logxf'\left(x\right)=5\log x  

 f(x)=log5xf'\left(x\right)=\log5x  

5.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Find the inverse of  f(x)=4xf\left(x\right)=4^x  

 f(x)=log4xf'\left(x\right)=\log4_{ }^x  

 f(x)=4log xf'\left(x\right)=4\log\ x  

 f(x)=logx4f'\left(x\right)=\log_x4  

 f(x)=log4xf'\left(x\right)=\log_4x